Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺⁺ by NAAC - V Cycle (CGPA 3.53) Affiliated to Manonmaniam Sundaranar University, Tirunelveli # **DEPARTMENT OF CHEMISTRY** TEACHING PLAN (UG) ODD SEMESTER 2025-2026 #### Vision Impart quality education, scientific skills, academic excellence, research attitude and skills to face global challenges. #### Mission - To develop intellectual and professional skills of the students - To provide a firm foundation in chemical concepts, laws and theories - To sharpen the scientific knowledge - To enhance critical thinking, problem solving ability, scientific temper and innovation - To apply chemistry in medicine, biology, industry and environment **Programme Educational Objectives (PEOs)** | PEOs | Upon completion of B.A/B.Sc. Degree Programme, the graduates will be able to | Mapping
with
Mission | |------|--|----------------------------| | PEO1 | apply appropriate theory and scientific knowledge to participate in activities that support humanity and economic development nationally and globally, developing as leaders in their fields of expertise. | M1& M2 | | PEO2 | use practical knowledge for developing professional empowerment and entrepreneurship and societal services. | M2, M3,
M4 & M5 | | PEO3 | pursue lifelong learning and continuous improvement of the knowledge and skills with the highest professional and ethical standards. | M3, M4,
M5 & M6 | **Programme Outcomes (POs)** | POs | Upon completion of B.Sc. Degree Programme, the graduates will | Mapping | |-----------------|--|-----------| | | be able to: | with PEOs | | PO1 | obtain comprehensive knowledge and skills to pursue higher studies in the relevant field of science. | PEO1 | | DO2 | | DECA | | PO2 | create innovative ideas to enhance entrepreneurial skills for economic | PEO2 | | | independence. | | | PO ₃ | reflect upon green initiatives and take responsible steps to build a | PEO2 | | | sustainable environment. | | | PO4 | enhance leadership qualities, team spirit and communication skills to | PEO1 & | | | face challenging competitive examinations for a better developmental | PEO3 | | | career. | | | PO5 | communicate effectively and collaborate successfully with peers to | PEO2 & | | | become competent professionals. | PEO3 | | PO6 | absorb ethical, moral and social values in personal and social life | PEO2 & | | | leading to highly cultured and civilized personality | PEO3 | | PO7 | participate in learning activities throughout life, through self-paced | PEO1 & | | | and self-directed learning to improve knowledge and skills. | PEO3 | **Programme Specific Outcomes (PSOs)** | | 3.5 | |---|--| | Jpon completion of B.Sc Chemistry programme, the graduates | Mapping | | vill be able to: | with POs | | understand the fundamentals, theories and principles of organic, | PO1 | | norganic and physical chemistry. | | | analyze physical and chemical properties of chemical compounds and | PO1& | | heir uses. | PO7 | | nterpret the mechanism of various chemical reactions. | PO3 | | - | &PO4 | | ynthesize organic and inorganic compounds using classical and modern | PO2 | | methods. | | | design and carry out scientific experiments, record and interpret the | PO1& | | esults with accuracy | PO4 | | use concepts, tools and techniques related to chemistry to other branches | PO5 | | of science. | | | levelop skills in the safe-handling of chemicals and their usage in day | PO1&PO7 | | oday life. | | | levelop entrepreneurial skills, empowered to fulfil the professional | PO2& | | 1 1 | PO6 | | | Inderstand the fundamentals, theories and principles of organic, norganic and physical chemistry. Inalyze physical and chemical properties of chemical compounds and heir uses. Interpret the mechanism of various chemical reactions. | **Department** : Chemistry Class : I B.Sc. Chemistry Title of the Course : Core Course I: General Chemistry-I Semester : I Course Code : CU231CC1 | Course Code | Τ. | Т | р | S | Credits | Inst. Hours | Total | | Marks | | | | |-------------|----|---|---|---|---------|-------------|---------|-------------|-------|-----|----------|-------| | Course Coue | | - | | - | 1 | 3 | Credits | inst. Hours | Hours | CIA | External | Total | | CU231CC1 | 5 | - | - | - | 5 | 5 | 75 | 25 | 75 | 100 | | | # **Learning Objectives:** 1. To acquire knowledge about atomic structure, dual nature of electron and the periodic properties. 2. To assimilate the concepts of chemical bonding and Organic Chemistry. | On the su | accessful completion of the course, student will be able to: | | |-----------|---|----| | 1 | remember the atomic structure, periodic properties, bonding, electronic configuration and properties of compounds. | K1 | | 2 | understand and classify the elements in the periodic table, types of bonds, reaction intermediates, electronic effects in organic compounds and types of reagents. | K2 | | 3 | apply the theories to calculate energy of spectral transition, electronegativity, percentage ionic character and bond order. | К3 | | 4 | analyse the relationship existing between electronic configuration, bonding, geometry of molecules, structure reactivity and electronic effects | K4 | | 5 | evaluate the trends in periodic properties, assess the properties of elements, and explain hybridization in molecules, nature of H – bonding and organic reaction mechanisms. | K5 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-----------|---|-------------------|---------------------|--------------------|---|--|--|---| | I | Atomic st | ructure and Periodic | | Γ | T | | T | Γ | Γ | | | 1 | History of atom (J.J.Thomson, Rutherford); Moseley's Experiment and Atomic number. | 2 | 1 | K1(R) &
K3 (Ap) | Lecture with Visual Aids such as PPT, Conceptual Demonstration. | Think-Pair-
Share,
Concept
Mapping. | Video
Lectures,
Notes/Slides. | Formative Quiz using Kahoot, Written Assignment- | | | 2 | Atomic Spectra;
Black-Body
Radiation and
Planck's quantum
theory. | 2 | | K2(U) | Lecture using visual aids like PPT. | Guided Inquiry
Worksheets. | Video
Lecture. | Conceptual
Quiz, Group
Presentation,
CIA I. | | | 3 | Bohr's model of
atom;The Franck-
Hertz Experiment;
Interpretation of H-
spectrum;
Photoelectric
effect. | 2 | 1 | K2(U) | Lecture with visualization, Concept-based discussion, examples from real-world experiences. | Collaborative
Learning. | PowerPoint with videos showing atom model. | Construction
of models for
Bohr's atom
model, CIA I. | | | 4 | Compton effect;
Dual nature of
Matter- De- Broglie
wavelength- | 2 | | K3(Ap) | Lecture with visual aids like videos. | Problem solving method, peer group teaching. | Youtube
Videos of
dual nature of
matter and
Davisson and | Open-book
test, CIA I. | | | | Davisson and Germer experiment. | | | | | |
Germer experiment. | | |----|-----------|--|---|---|-------------------|--------------------------------|--|--------------------------------------|---| | | 5 | Heisenberg's Uncertainty Principle; Electronic Configuration of Atoms and ions. | 2 | 1 | K3(Ap) | Flipped
classroom. | Peer Learning,
Real-World
examples. | Online
Tutorials and
Notes. | Problem-
Solving
Assignments,
CIA I. | | | 6. | Hund's rule, Pauli's exclusion principle and Aufbau principle. Numerical problems involving the core concepts. | 2 | | K3(Ap) | Conceptual demonstration. | Problem
solving
method. | You tube videos and notes. | Group
assignment,
CIA 1. | | II | Introduct | ion to Quantum mec | | | <u> </u> | T | T | T | | | | 1 | Classical mechanics, Wave mechanical model of atom, distinction between a Bohr orbit and orbital. | 3 | 1 | K1(R) &
K3(Ap) | Illustrations using models. | Blended
Learning. | Simulations,
YouTube
Lectures. | Question
answering,
CIA I. | | | 2 | Postulates of quantum mechanics; probability interpretation of wavefunctions, Formulation of Schrodinger wave equation - | 3 | | K2(U) | Lecture using interactive PPT. | Group
discussion,
blended
learning. | NPTEL video lectures. | Peer
discussions,
CIA I. | | Probabi
electron
visualiz
orbitals | density-
ing the | | | | | | | | |---|---|---|---|--------|---|--|-------------------------------------|---| | 3 Probabi density signific and Ψ ² Modern Table periodic Feature periodic classific element | and ance of Ψ Periodic Cause of city; s of the cation of | 2 | 1 | K3(Ap) | Lecture using periodic table, Application-Based approach. | Memorizing the elements of periodic table. | NPTEL
Video
Lectures. | Open Book
Test, Exam
Questions,
CIA I. | | atomic s
radii, io
covalen
ionization | | 2 | 1 | K3(Ap) | Collaborative approach. | Peer Teaching. | PhET
Interactive
Simulations. | Creation of concept map, CIA II. | | 5 Electron scales - and scales electron applicate electron Problem | negativity Mulliken Pauling's of negativity, | 2 | | K3(Ap) | Applying the principle to calculate the electronegativity of atoms. | Group
discussion. | You tube videos. | Short test on electronegati vity scales, .CIA II. | | III | Structure | and bonding – I | | | | | | | | |-----|-----------|--|---|---|--------------------|--|---|-----------------------|---| | | 1 | Ionic bond Ionic bond- definition; properties of ionic compounds; Energy involved in ionic compounds; Born Haber cycle – lattice energies- applications of lattice energy. | 2 | 1 | K1(R) &
K3 (Ap) | Mathematical Derivations, Concept Mapping. | Flipped
Classroom,
Peer Teaching. | Video
Lectures. | Conceptual MCQs, problem solving session on lattice energy calculation, CIA II. | | | 2 | Ion polarisation— polarising power and polarizability; Fajans' rules - effects of polarisation on properties of compounds; problems involving the core concepts. | 3 | | K2(U) | Core Conceptual Approach, Application- Based Teaching. | Socratic
Questioning,
Analogies. | NPTEL video lectrures | Numerical
problems on
polarising
power, CIA
II. | | | 3 | Covalent bond Shapes of orbitals, overlap of orbitals – σ and Π bonds. | 3 | 1 | K2(U) | Lecture using models. | Interactive Simulation. | NPTEL
Lectures. | Quiz using
kahoot, CIA
II. | | | 4 | Hybridization-
types-sp,sp ² ,sp ³ -
examples.
VSEPR
theory - shapes of
molecules of the | 3 | | K3(Ap) | Participatory
method using
models. | Peer group teaching. | Open
CourseWare. | Quick
quizzes
, CIA II. | | | 5 | type AB ₂ , AB ₃ , AB ₄ , AB ₅ , AB ₆ and AB ₇ Partial ionic character of covalent bond- dipole moment, percentage ionic character. | 1 | 1 | K3(Ap) | Core Conceptual
Approach. | Problem solving approach. | You- tube videos. | Short test,
CIA II. | |----|-----------|---|---|---|-----------------|------------------------------------|--|--|--| | IV | Structure | and bonding - II | | | | | | | | | | 1 | VB theory – application to hydrogen molecule; concept of resonance - resonance structures of some inorganic species – CO ₂ , NO ₂ , CO ₃ ²⁻ , NO ₃ , limitations of VBT. | 3 | 1 | K1(R) & K3 (Ap) | Inquiry-Based approach. | Think-Pair-
Share,
Simulation-
Based
Learning. | You tube videos on VB theory. | Conceptual Quiz on writing the resonance structures, Assignment, CIA II. | | | 2 | MO theory -
bonding,
antibonding and
nonbonding
orbitals, bond
order. | 2 | | K3(Ap) | Conceptual approach with examples. | Application based questions. | NPTEL lecture " Atomic Structure and Chemical Bonding" Prof K. Mangala | Assignments, Open Book Test on
construction of MO diagrams, CIA II. | | | | | | | | | Sundar, IIT
Madras. | | |---|---|---|---|--------|--|---|---|--| | 3 | MO diagrams of H ₂ , C ₂ , O ₂ , O + O ² · O ² · O ² · N ₂ NO, HF, CO; Magnetic characteristics, comparison of VB and MO theories. | 3 | | K3(Ap) | Conceptual Pedagogy, Problem solving. | Application-
based
questions on
construction of
MO diagrams. | You tube videos: Drawing Molecular Orbital Diagrams: Bruin Academy. | Peer review of constructed MO diagrams, CIA II. | | 4 | Coordinate bond: Definition, Formation of BF ₃ , NH ₃ molecules Metallic bond- electron sea model, VB model. | 2 | 1 | K3(Ap) | Flipped
Classroom. | Think-Pair-
Share to
explain the
formation of
BF ₃ and NH ₃
molecules. | You tube video: Organic Chemistry Tutor. | Construction
of models for
coordinate
bond
formation,
CIA II. | | 5 | Band theory- mechanism of conduction in solids; conductors, insulator, semiconductor – types, applications of semiconductors. numerical problems based on calculation of percentage ionic character. | 2 | 1 | K4(An) | Application-
Oriented
approach.
Problem
solving. | Problem
solving | NPTEL: Concepts in magnetism and superconduct ivity. | Peer group
discussion on
applications
of
semiconducto
rs, II CIA. | | V | Basic con | cepts in Organic Che | mistry and I | Electronic effe | ects | | | | | |---|-----------|--|--------------|-----------------|--------|-------------------------------------|--|--|---------------------------------| | | 1 | Types of bond cleavage – heterolytic and homolytic; arrow pushing in organic reactions; reagents and substrates. | 2 | 1 | K1(R) | Core Conceptual Approach. | Think-Pair- Share – students differentiate between homolytic and heterolytic cleavage. | YouTube:
Types of
bonds –
GCSE
Chemistry. | Open Book
Test, CIA II | | | 2 | Types of reagents - electrophiles, nucleophiles, free radicals; reaction intermediates — carbanions, carbocations, carbenes, arynes and nitrynes. Inductive effect - reactivity of alkyl halides, acidity of halo acids. | 2 | | K2(U) | Visual
Pedagogy. | Differentiating between types of reagents, intermediates and electronic effects. | You tube videos: Organic Chemistry reactions Byjus: Akash JEE. | Open book
test, CIA II | | | 3 | Basicity of amines; inductive and electromeric effects. Resonance – resonance energy, conditions for resonance - acidity of phenols, basicity of aromatic amines. | 2 | | K3(Ap) | Lecture using visual aids like PPT. | Group discussion on the reasons for acidity and basicity of organic compounds. | NPTEL: You
tube:
Organic
Chemistry
with Victor. | Conceptual
MCQs , CIA
II. | | 4 | Stability of carbonium ions, carbanions and free radicals, reactivity of vinyl chloride, dipole moment of vinyl chloride and nitrobenzene, steric inhibition to resonance. | 2 | 1 | K3(Ap) | Collaborative method. | Peer group
teaching on
reasons for
stability of
organic
reagents. | You tube videos on Formation of carbonium ions and reaction intermediates | Quiz on
Kahoot,
Assignment. | |---|--|---|---|--------|-----------------------|--|---|-----------------------------------| | 5 | Hyperconjugation -
stability of alkenes,
orienting effect of
methyl group,
dipole moment of
aldehydes and
nitromethane. | 2 | 1 | K2(U) | Lecture using videos. | Group
discussion on
Hyperconjugat
ion. | YouTube
videos on
Hyperconjug
ation. | Slip test, CIA
II. | | 6 | Types of organic reactions- addition, substitution, elimination and rearrangements. | 2 | | K2 (U) | Flipped classroom. | Interactive lecture using PPT. | You tube:
Types of
organic
reactions. | Quiz using
khoot, CIA
II. | Courses Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Hands on Training on writing resonance structures, MO diagrams Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): Professional Ethics **Assignment**: Model making on Types of hybridisation, (Last date to submit – 01-09-2025) # Sample questions Part - A (1 mark) | 1. Photo electric effect supports nature of light. (K1 - R, CO -1) | |---| | a) atom b) particle c) ion d) wave | | 2. Ionisation energy of atoms decreases along a group. State true or false. (K2 – U, CO - 2) | | 3. Assertion A: Ionic bond is otherwise called as electrovalent bond. (K4 – An, CO -2) | | Reasoning B: It is formed by the transfer of electrons from one atom to another. | | a) Both A and B are correct b) A is correct, B is wrong | | c)Ais wrong but B is correct d) Both A and B are wrong | | | | 4. Match the following with the respective type of bonding: (k1 – R, CO - 2) | | a) Ammonium ion - Hydrogen bond | | b) Methane - Co-ordinate bond | | c) Sodium Chloride - Covalent bond | | d) Water - Ionic bond | | 5. Pick out the electrophile from the following: (K1 – R, CO – 4) | | a) Cl^{-} b) NO_{2}^{+} c) Br^{-} d) $H_{2}O$ | | Part - B (6 marks) | | 1. What is Compton effect? Give its significance. $(K1 - R, CO - 1)$ | | 2. Differentiate between orbit and orbital. $(K2 - U, CO - 2)$ | | 3. List the general characteristics of ionic compounds. (K3 – A3, CO – 4) | | 4. What are bonding, antibonding and non bonding orbitals? $(K4 - R, CO - 4)$ | | 5. What is Inductive effect? Explain the types. $(K4 - An, CO - 4)$ | | Part - C (12 marks) | | 1. How will you prove the wave nature of electrons using Davisson and Germer Experiment? $(K5 - E, CO - 1)$ | | 2. Explain the periodic variation of ionisation energy, electron affinity and electronegativity. (K2 – U, CO – 3) | | 3. Explain Born – Haber cycle and give its applications. (K2 – U, CO – 4) | | 4. Explain the conducting property of a conductor and a semi conductor using band theory. $(K2 - U, CO - 3)$ | | 5. Explain the stability of reaction intermediates. $(K2 - U, CO - 2)$ | | | | Head of the Department: Dr. R. Gladis Latha Course Instructor: Dr. L. Deva Vijila | **Department**: Chemistry Class : I B.Sc. Chemistry Title of the Course: Core Lab Course I: Quantitative Inorganic Estimation (Titrimetry) And Inorganic Preparations Semester : Course Code : CU231CP1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|---|---|---|---|---------|-------------|-------------|----------|----------|-------| | Course Coue | | _ | _ | | Cicuits | inst iiouis | | Internal | External | Total | | CU231CP1 | - | - | 3 | - | 3 | 3 | 45 | 25 | 75 | 100 | ### **Learning Objectives:** 1. To estimate Inorganic compounds by titrimetric methods. 2. To prepare Inorganic compounds. | On the | On the successful completion of the course, students will be able to: | | | | | | | | | |--------|--|----|--|--|--|--|--|--|--| | 1. | explain the basic principles involved in titrimetric analysis and inorganic preparations. | K1 | | | | | | | | | 2. | compare the methodologies of different titrimetric analysis. | K2 | | | | | | | | | 3. | calculate the concentrations of unknown solutions in different ways and develop the skill to estimate the amount of a substance present in a given solution. | К3 | | | | | | | | | 4. | assess the yield of different inorganic preparations and identify the end point of various titrations | K4 | | | | | | | | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching Plan Total Contact hours: 45 (Including practical and assessment) | Unit | Topic | Practical
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|--|--------------------|---------------------|-----------------|---------------|-------------------------------------|------------------------------------|-------------------------------------| | I | Chemical Laboratory Safety in Acad | | | 10,01 | | 1/100Hou | | Evinanion national | | | Introduction - importance of safety education for students, common
laboratory hazards, assessment and minimization of the risk of the hazards, prepare for emergencies from uncontrolled hazards; concept of MSDS; importance and care of PPE; proper use and operation of chemical hoods and ventilation system; fire extinguishers-types and uses of fire extinguishers, demonstration of operation; chemical waste and safe disposal. | 1 | 1 | K2(U) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs | Performance, Observation. | | II | Common Apparatus Used in Quan | titative Esti | mation (Volu | metric) | l | | I | | | | Description and use of burette, pipette, standard flask, measuring cylinder, conical flask, beaker, funnel, dropper, clamp, stand, wash bottle, watch glass, wire gauge and tripod stand. | 2 | 1 | K3(Ap) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs | Performance, Observation, Reporting | | Principle of Quantitative Estimation (Volum | netric) | | | | | | | |---|---------|---|--------|---------------|-------------------------------------|------------------------------------|-------------------------------------| | Equivalent weight of an acid, base, salt, reducing agent, oxidizing agent; concept of mole, molality, molarity, normality; primary and secondary standards, preparation of standard solutions; theories of acid-base, redox, complexometric, iodimetric and iodometric titrations; indicators – types, theory of acid-base, redox, metal ion and adsorption indicators, choice of indicators. Quantitative Estimation (Volumetric) | | | K3(Ap) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs | Performance, Observation, Reporting | | Quantitative Estimation(Volumetric) Preparation of standard solution, dilution from stock solution Permanganometry Estimation of oxalic acid using standard ferrous ammonium sulphate Dichrometry Estimation of Ferrous Ammonium Sulphate using standard dichromate Complexometry Estimation of hardness of water using EDTA Estimation of Zinc using EDTA Estimation of Magnesium using EDTA Estimation of Lead using EDTA | 27 | 2 | K3(Ap) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs | Performance, Observation, Reporting | | Preparation of Inorganic | 10 | 1 | K3(Ap) | Demonstration | Experiential and | Simulations | Performance, | |--------------------------|----|---|--------|---------------|--------------------|-------------|------------------------| | compounds | | | | | lab based learning | and Virtual | Observation, Reporting | | Potash alum | | | | | | Labs | | | Tetra ammine copper (II) | | | | | | | | | sulphate | | | | | | | | | Prussian Blue | | | | | | | | | Mohr's Salt | | | | | | | | | | | | | | | | | Head of the Department: Dr. R. Gladis Latha Course Instructor: Dr. L. Deva Vijila **Department** : Chemistry Class : I B.Sc. Botany/Zoology Title of the Course : Elective Course I: Chemistry for Biological Sciences - I Semester : I Course Code : CU231EC1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|--------------|-------|-----|----------|-------| | | | _ | _ | | | 22300 223012 | Hours | CIA | External | Total | | CU231EC1 | 4 | _ | _ | _ | 3 | 4 | 60 | 25 | 75 | 100 | # **Learning Objectives** - 1. To gain knowledge on the significance and shapes of atomic orbitals - 2. To understand the basics of biophysical analysis and industrial chemistry - 3. To recognize the role of drugs, separation and purification techniques. | On tl | ne successful completion of the course, student will be able to: | | |-------|--|----| | 1 | remember the atomic structure, the preparation and uses of various compounds | K1 | | 2 | understand the efficiencies and uses of various drugs, fertilizers and fuels. | K2 | | 3 | explain and apply various theories behind osmosis, catalysis and chromatography | К3 | | 4 | differentiate the structure and uses of antibiotics, anaesthetics, antipyretics and artificial sugars. | K4 | | 5 | analyse various methods to separate chemical compounds | K4 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation | |------|--------|---|-------------------|---------------------|--------------------|---|---|--|--| | Ι | | Atomic Structure | | • | | | | | | | | 1 | Dual nature of electron, de-
Broglie equation, Davisson
and Germer experiment. | 2 | 2 | K1(R) | Conceptual lecture, Structure based explanation | Concept
mapping | Video
lectures,
Interactive
ppt | Formative Quiz using Quizizz, slip test, Conceptual questions, CIA I | | | 2 | Heisenberg's uncertainty principle and its significance. Compton effect | 2 | | K2(U) | Lecture with visual aids, Conceptual lecture | Think-Pair-
Share | Video
lectures,
Interactive
ppt | Quiz, slip test,
Group
discussion,
CIA I | | | 3 | Schrodinger's wave equation and its significance, eigen values and eigen functions, quantum numbers and their significance. | 2 | | K3(Ap | Interactive
lecture,
Problem
solving | Problem based learning, Group discussion, Peer teaching | Interactive videos and ppt | Quiz, slip test,
Problem
solving,
CIA I | | | 4 | Atomic orbitals, significance, shapes, difference between orbit and orbital. | 2 | | K2(U) &
K3(Ap) | Lecture with visual aids, Conceptual lecture | Inquiry-
Based
Learning | Video
lectures,
Interactive
ppt | Quiz, slip test,
Group
discussion,
CIA I | | М | 5 | Rules for filling up of orbitals, Pauli's exclusion principle, Aufbau principle, Hund's rule. Electronic configuration of elements up to 20. | 2 | | K2(U) &
K3(Ap) | Lecture with
visual aids,
Conceptual
lecture | Think-Pair-
Share,
Concept
mapping | Video
lectures,
Interactive
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | |----|---|--|---|---|--------------------|---|---|--|---| | II | | Industrial Chemistry | | | | | | | | | | 1 | Fuels, Fuel gases,
Natural gas, water gas,
semi water gas | 2 | 2 | K2(U) | Lecture with
Visual Aids | Think-Pair-
Share,
Inquiry-
Based
Learning, | Video
lectures and
ppt. | Formative Quiz using Nearpod, Oral Presentation, Conceptual Questions, CIA I | | | 2 | Carbureted water gas,
producer gas, CNG, LPG
and oil gas | 2 | | K2(U) &
K3(Ap) | Lecture with visual aids, Conceptual lecture | Think-Pair-
Share,
Concept
mapping | Video
lectures,
Interactive
ppt | Slip test,
Group
discussion,
CIA I | | | 3 | Silicones,Synthesis,prop
erties and uses of
silicones | 3 | | K3(Ap) &
K4(An) | Mechanism based teaching, Structure property mapping | Concept
Mapping,Thi
nk-Pair-
Share | Interactive
videos and
ppt | Short test,
CIA I | | | 4 | Fertilizers, Urea, ammonium sulphate, potassium nitrate NPK fertilizer, superphosphate | 3 | | K3(Ap) | Mechanism
based
teaching | Think-Pair-
Share,
Inquiry-
Based | Video
lectures,
Interactive
ppt | Formative Quiz using Quizizz, slip test, Quick | | Ш | | and triple superphosphate. | alveis | | | | Learning,
Concept
Mapping | | quiz using Kahoot, Conceptual questions, CIA I | |-----|---|--|----------|----|-------------------|--|--|--|---| | III | 1 | Biophysical Analysis and Cat Osmosis, osmotic | alysis 2 | 12 | K1(R) | Lastura with | Think-Pair- | Video | Formative | | | 1 | pressure and isotonic solutions | | 2 | | Lecture with
Visual Aids
such as PPT | Share, Inquiry- Based Learning, Concept Mapping. | Lectures,
Notes/Slides. | Quiz using Nearpod / Oral Presentation, Conceptual Questions, CIA I | | | 2 | Determination of molar mass by osmotic pressure measurement | 2 | | K2(U) | Conceptual
lecture,
Structure
property
mapping | Concept
mapping,
Group
discussion | Interactive videos and ppt | Quick quiz using Socrative, Conceptual questions, CIA II | | | 3 | Reverse osmosis,
adsorption, types and
factors influencing
adsorption and
applications | 3 | | K2(U) &
K3(Ap) | Conceptual lecture, Structure property mapping |
Concept
mapping,
Group
discussion | Video
lectures,
Interactive
ppt | Slip test, CIA
II | | | 4 | Catalysis, types,
intermediate compound
formation theory and
adsorption theory | 3 | | K3(Ap) | Mechanism based teaching, Structure property mapping | Concept
mapping | Interactive ppt | Formative Quiz using Nearpod, slip test, Conceptual questions, CIA II | | IV | | Drugs and Speciality Chemi | cals | | | | | | | |----|---|---|------|---|--------|--|---|-------------------------------------|---| | | 1 | Definition and uses of antibiotics, Penicillin, chloramphenicol and streptomycin. | 3 | 2 | K2(U) | Mechanism based teaching, Structure property mapping | Concept
mapping,
Think-Pair-
Share | Interactive videos and ppt | Short test, Quiz, Conceptual questions, CIA II | | | 2 | Anaesthetics, chloroform and ether. Antipyretics, aspirin, paracetamol and ibuprofen. | 3 | | K4(An) | Mechanism based teaching, Structure property mapping | Inquiry based learning, Concept mapping | Interactive videos and ppt | Short test,
Assignment,
CIA II | | | 3 | Artificial Sweeteners, saccharin, aspartame and cyclamate | 2 | | K4(An) | Mechanism based teaching, Structure property mapping | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using Nearpod, slip test, Conceptual questions, CIA II | | | 4 | Organic Halogen
compounds, freon and
teflon | 2 | | K2(U) | Mechanism based teaching, Structure property mapping | Concept
mapping,
Group
discussion | Video
Lectures,
Notes/Slides. | Formative Quiz using Nearpod, slip test, Conceptual questions, CIA II | | V | | Analytical Chemistry | | | | | | | | |---|---|---|---|---|--------|---|---|--|--| | | 1 | Introduction qualitative and quantitative analysis. Principles of volumetric analysis | 3 | 2 | K2(U) | Interactive
lecture,
Problem
solving | Problem based learning, Group discussion, Peer teaching | Interactive
videos and
ppt | Quiz, slip test,
Problem
solving,
CIA I | | | 2 | Separation and purification techniques, extraction, distillation and crystallization. | 3 | | K3(Ap) | Lecture with visual aids | Concept
mapping | Interactive videos and ppt | Slip test,
Quick quiz
using Kahoot,
Conceptual
questions,
CIA I | | | 3 | Chromatography, principle and application of column, paper and thin layer chromatography. | 4 | | K3(Ap) | Lecture with visual aids, Conceptual lecture | Think-Pair-
Share, Group
discussion | Video
lectures,
Interactive
ppt | Quiz, slip test,
Group
discussion,
CIA I | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em/SD): Think-Pair-Share and Seminar Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em): Group discussion and Seminar ### **Assignment:** 1. Silicones, Synthesis, properties and uses of silicones 2. Chromatography, principle and application of column chromatography ### **Seminar:** - 1. Quantum numbers and their significance. - 2. Factors influencing adsorption and applications - 3. Separation and purification techniques # Sample questions # Part - A | 1. | The metal used in Davison | and Germer Experi | ment is | . (K1-R, C | CO-1) | |----|---|-----------------------|----------------|---------------------|--| | | a) Iron | | | Nickel | d) Zinc | | 2. | Urea is a fertilizer primarily | used to provide | .(I | C2-U, CO-2) | | | | a) Sulphur | b) Potassium | c) Nitrogen | d) Phos | phorous | | 3. | Van't Hoff equation is | (K3-A | An, CO-3) | | | | | a) $P = cRT$ b) $P = c$ | VRT c) $P =$ | - Crp | d) $P = cRV$ | | | 4. | Which was the first discover | red antibiotic? (K2-1 | U, CO-2) | | | | | a) penicillin | b) streptomycin | | | | | | c) chloramphenicol | d) auromycin | | | | | 5. | Which of the following tech
a) Simple distillation
c) Fractional distillation | b) Steam distilla | ation | ure of two volat | ile liquids with close boiling points? (K3-Ap, CO-3) | | | | | | Part - B | | | | Explain the different types | | | | | | | . Compare water gas and carl | e v | . | | | | | Discuss the factors influence | | | 2) | | | | . How will you prepare Teflo | | | , | (K3 H CO 3) | | 3. | Explain the purification of s | substance by solvent | extraction and | i its importance. | (K2-U, CU-2) | | | | | | Part - C | | | | Explain the different types of | - | • | • | | | | • | | | | perphosphate. (K3-Ap, CO-3) | | | Explain the intermediate cor | ± | • | 1 , | | | | What are antibiotics? Give e | | | | | | ٥. | Analyse the steps involved i | n the crystallization | process for pu | rifying an impu | re solid organic compound. (K4-An, CO-4) | Course Instructor: Dr.Y.Christabel Shaji **Head of the Department:** Dr. R.Gladis Latha **Department**: Chemistry Class : I B.Sc Botany/Zoology Title of the Course: Elective Lab Course I: Volumetric Analysis Course Code : CU231EP1 Semester : I | Course Code | L | Т | Р | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|---|---|---|---|---------|--------------|-------------|----------|----------|-------| | Sourse Sour | | • | _ | | Credits | 11190 110015 | 10011100115 | Internal | External | Total | | CU231EP1 | - | - | 2 | - | 2 | 2 | 30 | 25 | 75 | 100 | # **Learning Objectives** 1. To understand the basics of preparation of solutions. 2. To understand the principles and practical experience of volumetric analysis. ### **Course Outcomes** | On the st | accessful completion of the course, student will be able to: | | |-----------|---|----| | 1 | understand the principles of titrimetric methods. | K1 | | 2 | gain knowledge on the usage of standard flask, pipette and burette. | К2 | | 3 | design, carry out, record and interpret the results of various titrations and apply their skill in the estimation of various compounds. | К3 | | 4 | analyze the suitable indicators for various titrations | K4 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching Plan Total Contact hours: 30 (Including practical and assessment) | Unit | Topic | Practical | | Cognitive | Pedagogy | Student Centric | E-Resources | Assessment/ | |------|--|-----------|-------|--------------------|---------------|-------------------------------------|------------------------------------|--| | | | Hours | Hours | level | | Method | | Evaluation Methods | | I | Qualitative Organic Analysis | | T. | | | | | | | | VOLUMETRIC ANALYSIS 1. Estimation of sodium hydroxide using standard sodiumcarbonate. | 25 | 5 | K3(Ap) &
K4(An) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs | Performance, Observation, Reporting, Model examination | | | 2. Estimation of sulphuric acid using standard oxalic acid. | | | | | | | | | | 3. Estimation of ferrous sulphate using standard Mohr's salt. | | | | | | | | | | 4. Estimation of oxalic acid using standard ferrous sulphate. | | | | | | | | | | 5. Estimation of zinc using EDTA. | | | | | | | | | | 6. Estimation of magnesium using EDTA. | | | | | | | | | | 7. Estimation of ferrous ion using potassium dichromate. | | | | | | | | Head of the Department: Dr. R. Gladis Latha Practical-in-Charge: Dr. Y. Christabel Shaji **Department** : Chemistry Class : I B.Sc. Chemistry **Title of the Course**: Foundation Course – Basics of Chemistry Semester : I Course Code : CU231FC1 | Course Code | L | Т | T P S Credite Inst Hours | Total | Marks | | | | | | |-------------|---|---|--------------------------|-------|-------|---|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | CU231FC1 | 2 | _ | _ | _ | 2 | 2 | 30 | 25 | 75 | 100 | # **Learning Objectives:** 1. To understand the concepts of periodic classification, chemical bonding, nomenclature of organic compound, isomerism and state of matter. 2. To acquire knowledge on various spectroscopic techniques. | | On the successful completion of the course, students will be able to: | | | | | | | | | | |----|--|----|--|--|--|--|--|--|--|--| | 1. | remember the basic concepts of periodic classification, chemical bonding, nomenclature of organic compound, isomerism and state of matter. | K1 | | | | | | | | | | 2. | understand the periodic properties, types of bonding, hybridization, stereo isomerism, properties of matter and spectroscopy. | | | | | | | | | | | 3. | apply the concepts of valence bond theory, hybridization, isomerism IUPAC nomenclature and spectroscopy to chemical compounds. | К3 | | | | | | | | | | 4. | analyze the periodic properties of elements, magnetic properties, characteristic of solids and types of spectroscopic techniques. | K4 | | | | | | | | | | 5. | evaluate quantum numbers and their significance and percentage of ionic character of compounds. | К5 | | | | | | | | | # K1 - Remember;
K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate # Teaching plan # **Total Contact hours: 30 (Including lectures, assignments and tests)** | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-----------|--|-------------------|---------------------|-------------------|--|---|---|---| | I | Structure | e of atom and periodi | c classificati | on of Element | s and proper | ties | | | | | | 1 | Atomic structure - fundamental particles - atomic mass - atomic number - isotopes - isobars - isotones | 1 | 1 | K1(R) &
K2 (U) | Lecture with
Visual Aids
such as PPT | Think-Pair-
Share. | Video Lectures,
Notes/Slides. | Written
Assignment | | | 2 | Orbitals - quantum number and their significance. | 1 | | K2(U) | Visual Lecture using PPT | Training on predicting the orbital | Video Lecture,
Problem Bank | Group
Presentation
CIA 1 | | | 3 | Shapes of s, p and d orbitals - rules governing electronic configuration in various its atomic orbitals. | 1 | 1 | K3(Ap) | Concept-based discussion, Problemsolving sessions using real-world applications. | Collaborative
Learning | PowerPoint with graphical representations of shapes of orbitals | Quizzes on electronic configuration Problem- solving worksheets on writing electronic configuration | | | 4 | Periodic table -
periodic laws
(Mendeleev and
Mosley) - | 1 | | K3(Ap) | Training on classifying elements based | Hands-On
Demonstratio
n on periodic
classification | You tube Videos
on periodic
table. | Project based
Presentation,
CIA I. | | | 5 | classification of elements into s, p, d and f-blocks. Metals - non- metals - periodic properties - concept, variation and factors affecting various periodic properties - inert pair effect. | 1 | | K4(An) | on electronic configuration Conceptbased discussion, relating position | Peer Learning, construction of periodic table | Online Tutorials
and Notes | Reasoning -
out questions,
CIA I | |----|----------|---|---|---|----------------|---|---|---|---| | II | Chemical | | | L | 1 | 1 | 1 | ı | I | | | 1 | Definition - types
of chemical bond -
ionic bond - ion
polarization -
dipole moment and
percentage of ionic
character. | 1 | 1 | K1(R) & K3(Ap) | Demonstration -based Learning, problem solving | Peer
Instruction,
Blended
Learning, | NPTEL Lectures, Simulations, YouTube Lectures | Poster Presentation, Practical Evaluation, Oral Viva, CIA I | | | 2 | Ion polarization - dipole moment and percentage of ionic character. | 1 | | K3(Ap) | Problem Solving: Calculation of dipole moment and ionic character | Group
discussion | Video lectures | Peer
discussions,
CIA I | | | 3 | Covalent bond - definition - postulates of valence bond theory | 2 | | K3(Ap) | Visual
Demonstration | Model
Making,
Project/Activ
ity, | NPTEL Video
Lectures | Problem-
Solving
Assignments,
Open Book
Exam
Questions,
CIA I | | | 4 | Concept of hybridization (sp, sp², sp³, sp³d, sp³d², dsp², d²sp³). Magnetic properties - paramagnetic - diamagnetic - ferromagnetic. | 1 | | K3(Ap) | Lecture using demonstration | Model
Making,
Project/Activ
ity, | PhET Interactive
Simulations | Quizzes on
types of
hybridisation,
group
discussion on
magnetic
properties,
CIA II | |-----|-------------------|--|-------------------|----------|--------------------|---|---|---|---| | III | Nomencla Nomencla | Co-ordinate covalent bond - definition - examples - Co- ordination compounds (basic concepts only). ture and Isomerism i | 1
n Organic co | ompounds | K4(An) | Interactive
session using
PPT | Collaborative learning | Interactive tools for dipole interactions. | Oral viva,
test on
nomenclature
of
coordination
compounds,.
CIA II | | | 1 | Carbon compounds - uniqueness of carbons - classification of hydrocarbons | 1 | 1 | K1(R) &
K3 (Ap) | Lecture using videos. | Flipped
Classroom,
Peer
Teaching | Video Lectures | Slip test on
nomenclature
of carbon
compounds,
CIA II | | | 2 | IUPAC
nomenclature of
organic
compounds. | 3 | | K2(U) | Application-
Based
Teaching | Socratic
Questioning,
Analogies | You – tube
videos on
nomenclature of
organic
compounds | Quiz on
nomenclature
of Organic
Chemistry,
CIA II | | | 3 | Structural
Isomerism: Chain
isomerism,
functional
isomerism, | 3 | 1 | K3(Ap) | Illustrations using examples and real world experiences | Peer group
teaching | NPTEL Lectures
on "Introductory
Organic
Chemistry"
Prof. Harinath | Short test on isomerism, CIA II | | | | positional isomerism and meta isomerism. | | | | | | Chakrapani,
Prof. Neera
Dashaputre. | | |----|-----------|--|---|---|--------------------|---|--|---|--| | | 4 | Stereoisomerism:
Geometrical and
optical isomerism | 3 | | K3(Ap) | Lecture using demonstration | Model
making | You – tube
videos on
stereoisomerism | Quiz using
khoot-
Concept
check MCQs,
CIA II | | | 5 | Chiral molecule -
enantiomers -
diastereomers -
meso compounds -
racemic mixture. | 1 | 1 | K4(An) | Lecture using demonstration | Group
discussion | NPTEL video
on isomerism | Oral/Viva
Test
CIA II | | IV | States of | Matter | | | | | | | | | | 1 | Gaseous state: Kinetic theory of gases - ideal and non-ideal gases - Ideal gas equation - deviation of ideal gas from ideal behavior | 3 | 1 | K1(R) &
K3 (Ap) | Inquiry-Based approach. | Think-Pair-
Share,
collaborative
learning | Coordination
Chemistry,
States of Matters
and Chemical
Kinetics
By Dr. R. N.
Jadeja | Conceptual Quiz on derivation CIA II | | | 2 | Vander Waal's equation and liquification of gases. Vander Waal's equation and liquification of gases. | 2 | | K2(U) | Flipped
classroom
Visual/Graphic
al Pedagogy | Participatory
learning | You tube videos
on Liquefaction
of Gases | Slip test, CIA
II | | | 3 | Liquids:
Intermolecular
forces, vapour | 3 | | K3(Ap) | Conceptual Pedagogy, | Group
discussion on
inter | "Chemistry and
Physics of
Surfaces and | Test on derivations of intermolecula | | | | pressure and
boiling point of
liquid | | | | Problem-
solving | molecular
forces | Interfaces" By Prof. Thiruvancheril G. Gopakumar IIT Kanpur | r forces, CIA
II | |---|------------|---|---|---|--------|---|-----------------------------|---|--| | | 4 | Surface tension -
viscosity - factors
affecting surface
tension and
viscosity. | 2 | 1 | K3(Ap) | Flipped
classroom | Participatory
learning | You tube videos "Surface Tension, How is it, how does it form" | MCQ quiz on
Surface
Tension, CIA
II | | | 5 | Solids: Definition - characteristics of solids- amorphous and crystalline solids - space lattice and unit cells - close packed structure of solids-radius ratio rule. | 2 | 1 | K4(An) | Lecture using examples, models and real- world experiences. | Application oriented models | NPTEL: Chemistry and Physics of Surfaces and Interfaces By Prof. Thiruvancheril G. Gopakumar IIT Kanpur | Peer-assessed
derivation
and graphs,
CIA II | | V | Introducti | ion to Spectroscopy | | | | | | | | | | 1 | Electromagnetic radiation - general characteristics of wave - wavelength - frequency - amplitude - wavenumber - | 1 | 1 | K1(R) | Core
Conceptual
Approach | Blended
learning | You tube videos
on
"Understanding
Electromagnetic
radiation" | Conceptual quiz on electromagne tic radiation using quizzzes, CIA II | | | electromagnetic spectrum. | | | | | | | |---|---|---|--------|--------------------------|-------------------------
--|--| | 2 | Absorption and emission spectrum - quantization of Energy level - selection rule | 1 | K2(U) | Visual
Pedagogy | Collaborative learning | You tube video
on "Emission
and Absorption
Spectra" | Slip test, CIA
II | | 3 | Intensity of the spectral lines - width of spectral lines. | 1 | K3(Ap) | Constructivist approach. | Interactive simulations | NPTEL: Quantum Chemistry, Spectroscopy & Photochemistry By Prof. Amar Ballabh, Prof. Prasanna Ghalsasi. The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat. | Derivation-
based short
questions,
CIA II | | 4 | Types of
spectroscopy -
Microwave
spectroscopy,
Infrared
spectroscopy. | 1 | K3(Ap) | Demonstration | Think – pair
– Share | You tube videos
on Spectroscopy | Open book
test, CIA II | | 5 | UV-Visible | 1 | K4(An) | Demonstration | Group | Flipped | Slip test, CIA | |---|------------------|---|--------|---------------|--------------|-----------|----------------| | | spectroscopy, | | | | Discussion | classroom | II | | | Nuclear Magnetic | | | | on | | | | | Resonance | | | | Spectroscopi | | | | | spectroscopy, | | | | c Principles | | | | | Electron spin | | | | | | | | | resonance | | | | | | | | | spectroscopy | | | | | | | | | | | | | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability, Skill Development Activities (Em / En /SD): Exhibition on Model Making Course Focusing on Cross Cutting Issues (Professional Ethics/ Human Values/Environment Sustainability/ Gender Equity): - Professional Ethics Assignment: Construction of periodic table #### **Sample Questions** Part - A $$(5 \times 2 = 10)$$ - 1. State Pauli's exclusion principle. (K1-R, CO-1) - 2. Calculate the oxidation number of Fe in the complex [Fe(en) 2 (SCN) 2]Cl (K1-R, CO-2) - 3. Differentiate between homocyclic and heterocylic compounds. (K4-An, CO-2) - 4. Give Vanderwaal's equation and expand the terms. (K3-Ap, CO-1) - 5. Define wave number. (K1-R, CO-1) Part - B (5 x $$5 = 25$$ marks) - 1. "Atomic and ionic radii of elements decreases as we move from left to right in a period and increases from top to bottom in a group". Give reason. (K4-An, CO-1) - 2. Calculate the percentage ionic character of HCl. The bond angle is 1.275A° and the observed dipole moment is 1.03D. (K3-Ap, CO-2) - 3. Differentiate between racemic mixture and mesoform. (K4-An, CO-3) - 4. Explain Linde's method of liquefaction of gases. (K3-Ap, CO-3) - 5. Differentiate between amorphous and crystalline solids. (K4-An, CO-4) - 1. Classify elements on the basis of their electronic configuration. (K2-U, CO-2) - 2. Explain the different types of magnetic forces that exist in substances. (K2-U, CO-2) - 3. Apply the concept of hybridisation and predict the shapes of PCl₅ and SF₆ molecules. (K3-Ap, CO-3) - 4. Explain the structural isomerism exhibited by organic compounds. (K2-U, CO-2) - 5. Explain the different types of inter-molecular forces. (K3-Ap, CO-3) Head of the Department: Dr. R. Gladis Latha Course Instructor: Dr. L. Deva Vijila Department : Chemistry Class : I Year Title of the Course : Non Major Elective NME I : Food Chemistry Semester : I Course Code : CU231NM1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | Marks | | | |-------------|---|---|---|---|---------|-------------|-------|-------|----------|-------| | | | | | | | | Hours | CIA | External | Total | | CU231NM1 | 2 | _ | _ | _ | 2 | 2 | 30 | 25 | 75 | 100 | ### **Learning Objectives:** 1. To know about adulterations used in food and their impact on health. 2. To learn the different types of additives used in food. ### **Course Outcomes** | n the suc | cessful completion of the course, student will be able to: | | |-----------|---|----| | 1 | remember and recall the different types of adulterants in food, edible oils used in foods and beverages. | K1 | | 2 | understand the effect of chemicals in common food and their adverse impact on health. | K2 | | 3 | apply various methods to detect various adulterants in food and to determine the values of oils and fats. | К3 | | 4 | analyze the effects of contaminants and additives in food. | K4 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation | |------|--------|---|-------------------|---------------------|--------------------|---|---|--|---| | I | | Food Adulteration | | | | | | | | | | 1 | Sources of food, types, advantages and disadvantages. | 1 | 1 | K1(R) &
K2(U) | Lecture with PPT | Think-Pair-
Share,
Inquiry-Based
Learning, | Video lectures, Interactive ppt | Formative
Quiz using
Quizizz, slip
test, CIA I | | | 2 | Food adulteration - contamination of wheat, rice, milk, butter etc. with clay stones, water and toxic chemicals. | 2 | | K2(U) &
K3(Ap) | Lecture with PPT, Experiential Learning | Collaborative Learning, Concept Mapping | Interactive
videos and
ppt | Quiz, slip
test, Problem
solving,
CIA I | | | 3 | Common adulterants, Ghee adulterants and their detection. Detection of adulterated foods by simple analytical techniques. | 2 | | K2(U)&
K4(An) | Lecture with visualization, Concept-based discussion, Interactive lecture | Think-Pair-
Share,
Inquiry-Based
Learning | Video
Lecture, PPT | Slip test,
Quick quiz
using
Kahoot, CIA | | II | | Food Poison | | | | , | , | | | | | 1 | Food poisons - natural poisons (alkaloids - nephrotoxin). | 2 | 1 | K2(U) | Lecture with PPT | Think-Pair-
Share,
Inquiry-Based
Learning,
Peer Teaching,
Gamified | Video Lectures, Simulations, Notes/Slides, | Quiz, slip
test, Group
discussion,
CIA I | | | | | | | | | Quiz, Concept
Mapping. | | | |-----|---|--|---|---|------------------|--|---|--|--| | | 2 | Pesticides, (DDT,
BHC, Malathion) -
Chemical poisons. | 1 | | K2(U) | Mechanism
based teaching,
Structure
property
mapping | Gamified
Quiz, Concept
Mapping. | Video
Lecture, PPT | Formative Quiz using Quizizz, slip test, Conceptual questions, CIA I | | | 3 | First aid for poison consumed victims | 2 | | K3(Ap) | Lecture with visualization, Concept-based discussion | Think-Pair-
Share, Group
discussion | Video
lectures,
Interactive
ppt | Quiz, slip
test,
CIA I | | III | | Food Additives | | | | | | | | | | 1 | Food additives -
artificial sweeteners-
Saccharin-Cyclomate
and Aspartate | 1 | 1 | K2(U) | Lecture with Visual Aids such as PPT, Flipped Classroom. | Think-Pair-
Share, Group
discussion | Video
Lectures,
Notes/Slides, | Quiz, slip
test, Group
discussion,
CIA I | | | 2 | Food flavours - esters, aldehydes and heterocyclic compounds – Food colours – Emulsifying agents. | 2 | _ | K2(U)&K
4(An) | Interactive
lecture | Inquiry based learning, Concept mapping | Video
lectures,
Interactive
ppt | Formative Worksheet, Conceptual Quiz, Group Presentation, CIA I | | | 3 | Preservatives -
leavening agents.
Baking powder – yeast
– tastemakers – MSG -
vinegar. | 2 | | K3(Ap) | Lecture with visualization, Concept-based discussion | Think-Pair-
Share Concept
Mapping | Video
lectures and
ppt | Slip test,
Conceptual
questions,
CIA II | | IV | IV Beverages | | | | | | | | | | | |----|--------------|---|---|---|------------------|--|--|------------------------------|--|--|--| | | 1 | Beverages-soft drinks-
soda-fruit juices-
alcoholic beverages-
examples | 2 | 1 | K2(U) | Lecture with
Visual Aids
such as PPT | Think-Pair-
Share,
Inquiry-Based
Learning, | Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | | | 2 | Carbonation-addiction
to alcohol– diseases of
liver and social
problems. | 3 | | K2(U)&K
4(An) | Conceptual lecture, Interactive lecture, Structure based explanation | Think-Pair-
Share,
Inquiry-Based
Learning and
Concept
mapping | Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | | V | | Edible Oils | | | | | I. | | CHTH | | | | | 1 | Fats and oils - Sources of oils - production of refined vegetable oils - preservation | 2 | 1 | K2(U)&
K3(Ap) | Lecture with visual aids, Conceptual lecture | Think-Pair-
Share,
Inquiry-Based
Learning and
Concept
mapping |
Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | | 2 | Saturated and | 1 | K2(U) | Interactive | Think-Pair- | Video | Formative | |---|--------------------------|---|---------|-------------|---------------|--------------|---------------| | | unsaturated fats and | | | lecture, | Share, | lectures and | Quiz using | | | oils-examples - iodine | | | Problem | Inquiry- | ppt | Nearpod, slip | | | value - determination of | | | solving | Concept | | test, Quick | | | iodine value, acid | | | | mapping | | quiz using | | | value. | | | | | | Kahoot, | | | | | | | | | Conceptual | | | | | | | | | questions, | | | | | | | | | CIA II | | 3 | RM value, | 2 | K3(Ap)& | Interactive | Think-Pair- | Video | Formative | | | saponification values | | K5(E) | lecture, | Share, | lectures and | Quiz using | | | and their significance- | | | Problem | Inquiry-Based | ppt | Nearpod, slip | | | Role of MUFA and | | | solving and | Learning, | | test, Quick | | | PUFA in preventing | | | Conceptual | | | quiz using | | | heart diseases. | | | lecture | | | Kahoot, | | | | | | | | | Conceptual | | | | | | | | | questions, | | | | | | | | | CIA II | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em/SD): Think-Pair-Share and Seminar **Assignment:** Disadvantages of Food colours ### Seminar: 1. Sources of lipids and protiens 2. Disadvantages of alcohol beverages ## Sample questions #### Part - A | 1. Which of the following is a common adulterant used in milk? (K2-U, CO-2) | |---| | a) Starch b). Alum c). Turmeric d). Lead chromate | | 2. What is the first aid to be given in case of chemical food poisoning? (K2-U, CO-2) | | a)Give strong acid b) Induce vomiting using warm salt water c) Apply ice packs d) Drink alcohol | | 3. Esters are used in food as(K2-U, CO-2) | | a). Preservatives b). Leavening agents c). Flavouring agents d). Sweeteners | | 4. What is the health effect of long-term alcohol consumption? (K2-U, CO-2) | | a) Improved digestion b) Stronger immunity c) Liver damage d) Weight loss | | 5. The iodine value of an oil indicates its(K4-An, CO-4) | | a). Saponification ability b) Level of rancidity c) Degree of unsaturation d) Caloric content | #### Part - B - 1. How will you detect the adulterants present in ghee? (K3-Ap, CO-3) - 2. Explain the action of DDT and BHC against pesticides. (K4-An, CO-4) - 3. Write a note on artificial sweeteners. (K2-U, CO-2) - 4. Explain the methods of carbonation. (K2-U, CO-2) - 5. How will you determine the RM value in fats and oil? (K4-An, CO-4) #### Part - C - 1. How will you detect the adulterated foods by simple analytical techniques. (K3-Ap, CO-3) - 2. Discuss about the first aid for poison consumed victims. (K2-U, CO-2) - 3. Differentiate between saccharin and aspartame based on structure and sweetness. (K4-An, CO-4) - 4. Discuss the social problems due to alcoholism. (K2-U, CO-2) - 5. How will you manufacture refined cotton seed oil? (K3-Ap, CO-3) Head of the Department: Dr. R.Gladis Latha Course Instructor: Dr.Y.Christabel Shaji **Department**: Chemistry Class : II B.Sc Chemistry Title of the Course : General Chemistry - III Semester : III Course Code : CU233CC1 | Course Code | L T | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|-----|---|---|---|---------|-------------|-------------|-----|-------|-----| | Course Cour | | • | _ | | Credits | inst. Hours | 10001100115 | CIA | Total | | | CU233CC1 | 5 | - | - | - | 5 | 5 | 75 | 25 | 75 | 100 | ## **Learning Objectives:** - 1. To know the properties and applications of chemical compounds - 2. To analyse the kinetics of gases, crystal systems, nuclear radioactivity and chemical reactions #### **Course Outcomes** | On the successful completion of the course, students will be able to: | On the successful completion of the course, students will be able to: | | | | | | | | |---|---|--|--|--|--|--|--|--| | 1. remember the classification and properties of chemical compounds | K1 | | | | | | | | | 2. understand the basic concepts of states of matter, nuclear radioactivity and organic reactions | K2 | | | | | | | | | 3. apply the concepts and mechanism in gases, liquids, solids, radioactivity and organic reactions | К3 | | | | | | | | | 4. analyze the properties of gases, liquids, solids and mechanisms of chemical reactions | K4 | | | | | | | | | 5. evaluate the kinetics of gases, crystal structure, nuclear reactions and properties of organic reactions | K5 | | | | | | | | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|---------|---|-------------------|---------------------|--------------------|---|--|--|---| | I | Gaseous | state | | | | | | | | | | 1 | General characteristics of gases - postulates and derivation from the kinetic gas equation. | 2 | 1 | K1(R) &
K2(U) | Lecture with visual aids, Conceptual lecture | Concept
mapping | Video
lectures,
Interactive
ppt | Formative Quiz using
Quizizz, slip test,
Conceptual questions,
CIA I | | | 2 | The Maxwell-Boltzmann distribution of speed of molecules - average, root mean square and most probable velocity and average kinetic energy. | 3 | | K3(Ap) &
K4(An) | Interactive lecture, Problem solving | Problem based
learning, Group
discussion, Peer
teaching | Interactive videos and ppt | Quiz, slip test,
Problem solving,
CIA I | | | 3 | Collision frequency - collision diameter - mean free path and viscosity of gases. | 2 | 1 | K2(U) | Lecture with visual aids | Concept
mapping | Interactive videos and ppt | Slip test, Quick quiz
using Kahoot,
Conceptual questions,
CIA I | | | 4 | Real gases - deviations from ideal gas behaviour compressibility factor - Z and its variation with pressure for different gases. | 3 | | K2(U) &
K3(Ap) | Lecture with visual aids, Conceptual lecture | Think-Pair-
Share | Video
lectures,
Interactive
ppt | Quiz, slip test, Group
discussion, CIA I | | | 5 | Equations of states for real gases - Virial equation and van der waal's equation | 2 | 1 | K4(An) | Visual concept
lecture, Rule based
teaching | Problem based
learning, Group
discussion | Video
lectures,
Interactive
ppt | Quiz, slip test, Group
discussion, CIA I | | II | Liquid a | and Solid State | | | | | | | | |----|----------|---|---|---|------------------|---|--|------------------------------|---| | | 1 | Properties of liquids -
surface tension and
viscosity. Crystalline and
amorphous - isotropy and
anisotropy - isomorphism
and polymorphism | 2 | 1 | K1(R) &
K2(U) | Conceptual lecture,
Model based
explanation | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Crystals - size and shape - symmetry elements - plane, centre and axis - Miller indices - unit cells and space lattices. Classification of crystal systems - Bravais lattices | 3 | | K3(Ap) & K4(An) | Lecture with visual aids and models, Demonstration | Inquiry based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Short test, Conceptual
questions, Group
discussion,
CIA I | | | 3 | X - ray diffraction and Bragg's equation. Packing in atomic solids - simple cubic - body centered cubic - face centered and hexagonal close packing | 3 | 2 | K2(U) | Interactive lecture, Visual demonstration, Mechanism based explanation | Think-Pair-
Share, Concept
mapping | Interactive videos and ppt | Quiz, slip test, Structure identification task, Group discussion, CIA I | | | 4 | Co-ordination number in typical structures - NaCl - CsCl - ZnS and TiO ₂ . | 2 | | K3(Ap) | Structure based teaching, Visual demonstration | Inquiry based learning | Video
lectures and
ppt | Short test, Conceptual
questions, Group
discussion, CIA I | | | 5 | Structure and properties of diamond and graphite. Defects in solids - stoichiometric and nonstoichiometric defects. | 2 | | K5(E) | Conceptual lecture,
Interactive lecture,
Structure based
explanation,
Demonstration | Think-Pair-
Share, Concept
mapping | 11 | Short test, CIA I | | III | Nuclear | Chemistry | | | | | | | | |-----|---------|---|---|---|--------------------
--|---|------------------------------|---| | | 1 | Natural radioactivity - α, β and γ rays - half-life period - Fajan-Soddy group displacement law - Geiger-Nattal rule - isotopes - isobars - isotones - nuclear isomerism - radioactive decay series - magic numbers - units | 3 | 2 | K1(R) &
K2(U) | Concept based explanation, Numerical illustration | Concept
mapping, Think-
Pair-Share | Video
lectures and
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Curie - Rutherford - Roentgen - nuclear stability - neutron-proton ratio - binding energy - packing fraction and mass defect. | 2 | | K3(Ap) | Lecture with visual
aids, Mechanism
based teaching,
Problem solving | Problem based
learning, Think-
Pair-Share | Interactive videos and ppt | Short test, CIA I | | | 3 | Derivation of decay
constant - half-life period
and radiocarbon dating.
Nuclear energy - nuclear
fission and fusion - major
nuclear reactors in India | 3 | | K3(Ap) &
K4(An) | Conceptual lecture,
Mechanism based
teaching, Problem
solving | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Nearpod, Conceptual
questions, CIA II | | | 4 | Radiation hazards -
disposal of radioactive
waste and safety measures. | 2 | 1 | K2(U) | Mechanism based teaching, Conceptual lecture | Concept
mapping, Think-
Pair-Share | Interactive videos and ppt | Slip test, Conceptual questions, CIA II | | | 5 | Applications of radioactivity in medicine, agriculture and industry. | 2 | | K2(U) &
K3(Ap) | Conceptual lecture, Case based teaching | Concept
mapping, Group
discussion | Interactive videos and ppt | Short test, Assignment, Conceptual questions, CIA II | | IV | Haloger | 1 Compounds | | | | | | | | |----|---------|---|---|---|--------------------|--|--|----------------------------------|--| | | 1 | Aliphatic halogen
compounds - General
methods of preparation -
physical and chemical
properties. | 2 | 2 | K2(U) | Interactive lecture | Think-Pair-
Share | Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | 2 | Mechanism and stereochemistry of aliphatic S_N^1 and S_N^2 reactions. Difference between S_N^1 and S_N^2 mechanism. Factors influencing the rate of aliphatic nucleophilic substitution reaction. | 3 | | K3(Ap) &
K4(An) | Mechanism based teaching, Conceptual lecture | Concept
mapping, Think-
Pair-Share | Interactive
videos and
ppt | Short test, Quiz,
Conceptual questions,
CIA II | | | 3 | Preparation - properties
and uses of chloroform -
iodoform and carbon
tetrachloride | 2 | | K3(Ap) &
K4(An) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Socrative, Conceptual
questions, CIA II | | | 4 | Aromatic halogen compounds General methods of preparation - physical and chemical properties. properties of aryl halides | 2 | 1 | K2(U) &
K3(Ap) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive
videos and
ppt | Slip test, CIA II | | | 5 | Mechanism of aromatic S_N^1 , S_N^{Ar} and benzyne reactions. Preparation - properties and uses of D.D.T and B.H.C | 3 | | K3(Ap) & K4(An) | Mechanism based teaching, Structure property mapping | Think-Pair-
Share | Interactive
videos and
ppt | Short test, CIA II | | V | Alcohols | s and Phenols | | | | | | | | |---|----------|---|---|---|-------------------|--|--|-------------------------------------|--| | | 1 | General methods of preparation - physical and chemical properties. Ascent and descent series. | 2 | 2 | K2(U) | Interactive lecture | Think-Pair-
Share | Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | 2 | Preparation - properties
and uses of allyl alcohol,
ethylene glycol and
glycerol. Estimation of
number of hydroxyl
groups in polyhydroxy
alcohols | 3 | | K3(Ap) &
K5(E) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Think-
Pair-Share | Interactive videos and ppt | Short test, Quiz,
Conceptual questions,
CIA II | | | 3 | General methods of preparation - physical and chemical properties. Acidic character of phenol and effect of substituent on the acidity of phenol. | 2 | | K2(U) | Mechanism based
teaching, Structure
property mapping | Inquiry based learning, Concept mapping | Interactive
videos and
ppt | Short test,
Assignment, CIA II | | | 4 | Electrophilic substitution
reactions - Reimer-
Tiemann - Kolbe-Schmidt
- Gatermann synthesis | 2 | 1 | K2(U) | Mechanism based teaching, Structure property mapping | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
Conceptual questions,
CIA II | | | 5 | Libermann nitroso and phthalein reactions. Preparation, properties and uses of catechol - resorcinol - quinol and pyrogallol | 3 | | K2(U) &
K5(E) | Mechanism based
teaching, Structure
property mapping | Concept
mapping, Think-
Pair-Share | Interactive videos and ppt | Quick Quiz with
Kahoot, Short test,
CIA II | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (Em/SD): Model making on crystals and crystal lattice **Assignment:** Applications of radioactivity (Last date to submit: 01-09-2025) #### **Sample Questions** PART - A - 1. What is the compressibility factor (Z) of an ideal gas? (K1-R, CO-1) - a) 0 b) 1 c) -1 d) 2 - 2. Identify the co-ordination number in a body-centered cubic (BCC) structure. (K2-U, CO-2) - a) 4 b) 6 c) 8 d) 12 - 3. Which unit measures the activity of a radioactive substance? (K2-U, CO-2) - a) Curie - b) Rutherford c) Roentgen d) Becquerel - 4. Which of the following statement is incorrect? (K4-An, CO-4) - a) No intermediate is always involved in the S_N² mechanism - b) S_N^2 reaction is a two step reaction - c) S_N^2 reaction gives inverted products - d) S_N^2 reaction is favoured by aprotic solvents - 5. Which of the following is 1,2-dihydroxybenzene? (**K2-U, CO-2**) - a) Catechol b) Resorcinol c) Quinol d) Pyrrogallol PART - B - 1. Derive kinetic gas equation. (K4-An, CO-4) - 2. Compare the packing efficiency of simple cubic, body-centered cubic, and face-centered cubic lattices. (K4-An, CO-4) - 3. Mention the applications of radioactivity in medicine and industry. (K3-Ap, CO-3) - 4. Differentiate S_N^1 and S_N^2 reaction mechanisms with examples. (K4-An, CO-4) - 5. Explain the preparation, properties and uses of pyrogallol. (K2-U, CO-2) PART - C - 1. Analyze the effect of temperature on the mean free path of gas molecule. (K4-An, CO-4) - 2. Compare the structural differences between diamond and graphite. (K4-An, CO-4) - 3. Describe the process of nuclear fission and its application in nuclear reactors. (K3-Ap, CO-3) - 4. Compare the preparation and properties of chloroform and iodoform. (K4-An, CO-4) - 5. How will you estimate the number of hydroxyl group in polyhydroxy compounds. (K5-E, CO5) Head of the Department: Dr. R. Gladis Latha Course Instructor: Dr. Sheeba Daniel **Department**: Chemistry Class : II B.Sc Chemistry Title of the Course : Core Lab Course III: Organic Analysis and Determination of Physical Constants Semester : III Course Code : CU233CP1 | Course Code | I. | Т | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|----|---|---|---|---------|-------------|-------------|----------|----------|-------| | Course Cour | | • | • | | Creates | inst. Hours | 10001100115 | Internal | External | Total | | CU233CP1 | - | - | 3 | - | 3 | 3 | 45 | 25 | 75 | 100 | ## **Learning Objectives:** 1. To identify the functional groups in organic compounds through qualitative tests 2. To determine the physical constants of organic compounds #### **Course Outcomes** | On the | successful completion of the course, students will be able to: | | |--------|---|----| | 1. | remember the basic concepts of organic analysis | K1 | | 2. | understand the methods to identify the functional groups | K2 | | 3. | apply the procedure for identifying the functional groups | К3 | | 4. | analyse the functional groups and physical constants of organic compounds | K4 | | 5. | evaluate the melting and boiling points of organic compounds | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching Plan Total Contact hours: 45 (Including practical and assessment) | Unit | Topic | Practical | | Cognitive | Pedagogy | Student Centric | E-Resources | Assessment/ | |------|---------------------------------------|-----------
-------|-----------|---------------|--------------------|-------------|---------------------------| | | | Hours | Hours | level | | Method | | Evaluation Methods | | I | Qualitative Organic Analysis | | | | | | | | | | Preliminary examination - detection | 35 | 6 | K3(Ap) & | Demonstration | Experiential and | Simulations | Performance, | | | of special elements. Aromatic and | | | K4(An) | | lab based learning | and Virtual | Observation, Reporting, | | | aliphatic nature. Test for saturation | | | | | | Labs | Model examination | | | and unsaturation - identification of | | | | | | | | | | functional groups using solubility | | | | | | | | | | tests. Confirmation of functional | | | | | | | | | | groups. Preparation of derivatives | | | | | | | | | | for functional groups. | | | | | | | | | II | Determination of melting and boili | ng | | | | | | | | | Determination of melting and | 3 | 1 | K5(E) | Demonstration | Experiential and | Simulations | Performance, | | | boiling point of organic compounds | | | | | lab based learning | and Virtual | Observation, Reporting | | | | | | | | | Labs | | Head of the Department: Dr. R. Gladis Latha Practical-in-Charge: Dr. Sheeba Daniel Department : Chemistry Class : II B.Sc Physics Title of the Course : Elective Course III: Chemistry For Physical Sciences – I Semester : III Course Code : CU233EC1 | Caura Cada | т | Т | D | C | Cuadita | Inst. | Total House | | Marks | | |-------------|---|---|---|---|---------|-------|-------------|-----|----------|-------| | Course Code | L | 1 | r | 3 | Credits | Hours | Total Hours | CIA | External | Total | | CU233EC1 | 4 | - | - | - | 3 | 4 | 60 | 25 | 75 | 100 | ## **Learning Objectives** 1. To know the basics of atomic orbitals, chemical bonds and hybridization 2. To understand the concepts of thermodynamics, phase rule, nuclear chemistry and its applications. | On | the successful completion of the course, student will be able to: | | |----|---|----| | 1. | gain in-depth knowledge about the theories of chemical bonding, nuclear reactions and its applications. | K1 | | 2. | understand the efficiencies and uses of various fuels and fertilizers. | K2 | | 3. | explain the type of hybridization, electronic effect and mechanism involved in the organic reactions. | K2 | | 4. | apply various thermodynamic principles, systems and phase rule. | К3 | | 5. | analyze various methods for the separation of chemical components | K4 | K1 - Remember; K2 - Understand; K3 - Apply; K4 – Analyze Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|---------|--|-------------------|---------------------|-----------------|---|--|--|--| | I | Chemica | l Bonding and Nuclear Che | mistry | | | | | | | | | 1 | Chemical Bonding:
Molecular Orbital Theory-
bonding, antibonding and
non-bonding orbitals. | 2 | 1 | K2(U) | Interactive lecture, Demonstration, Problem solving | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video lectures, Virtual lab simulations, Interactive ppt | Formative Quiz using
Quizizz, Conceptual
questions, CIA I | | | 2 | Molecular orbital diagrams
for Hydrogen, Helium,
Nitrogen; discussion of
bond order and magnetic
properties. | 2 | | K3(A) | Lecture with visual aids and models, Demonstration, Flipped classroom | Molecular diagram drawing practice, Group discussion. | Interactive videos and ppt | Quiz, Problem solving questions, CIA I | | | 3 | Nuclear Chemistry:
Fundamental particles -
Isotopes, Isobars, Isotones
and Isomers | 2 | 1 | K3(U) | Visual concept
lecture, Structure
based learning | Think-Pair-
Share, Concept
mapping | Interactive videos and ppt | Structural identification, Conceptual questions, CIA I | | | 4 | Differences between
chemical reactions and
nuclear reactions - group
displacement law. Nuclear
binding energy - mass
defect - calculations. | 2 | | K3(A) | Model based
teaching,
Demonstration,
Problem solving | Problem based learning, peer teaching. | Interactive videos and ppt | slip test, Problem
solving questions,
Group discussion,
CIA I | | | 5 | Nuclear fission and nuclear
fusion - differences – Stellar
energy. Applications of
radioisotopes – carbon | 2 | 1 | K4(An) | Visual concept
lecture, Problem
solving | Hands-on model
building, Group
discussion, | Video
lectures,
Virtual lab
simulations, | slip test, Group
discussion, CIA I | | | | dating, rock dating and medicinal applications. | | | | | Problem based learning | Interactive ppt | | |-----|----------|---|----------|---|--------|--|--|------------------------------|---| | II | Industri | al Chemistry | | | | | | | | | | 1 | Fuels: Fuel gases: Natural gas, water gas, semi water gas, | 2 | 1 | K2(U) | Conceptual lecture, Model based explanation | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | slip test, Quick quiz
using Kahoot, CIA I | | | 2 | carbureted water gas,
producer gas, CNG, LPG
and oil gas | 2 | | K2(U) | Mechanism based teaching, mind mapping | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Conceptual questions,
Group discussion,
CIA I | | | 3 | Silicones: Synthesis, properties and uses of silicones. | 2 | 1 | K3(A) | Interactive lecture,
Mechanism based
explanation | Group
discussion,
Concept
mapping | Interactive videos and ppt | Quiz, Group
discussion, CIA I | | | 4 | Fertilizers: Urea,
ammonium sulphate,
potassium nitrate, | 2 | | K3(A) | Application based teaching, Reaction mapping, | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Short test, Conceptual questions, CIA I | | | 5 | NPK fertilizer,
superphosphate, triple
superphosphate. | 2 | | K4(An) | Interactive lecture, Structure based explanation | Think-Pair-
Share, Concept
mapping | | Short test, CIA I | | III | Fundam | ental Concepts in Organic C | hemistry | | | | | | | | | 1 | Hybridization: Orbital overlap, hybridization and geometry of CH ₄ , C ₂ H ₄ , C ₂ H ₂ and C ₆ H ₆ . | 2 | 1 | K4(An) | Interactive lecture, Model based explanation | Concept
mapping, hands
on model
making | Lectures
using
models | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples. | 2 | | K3(A) | Mechanism based
teaching, Problem
solving | Think-Pair-
Share | Interactive
videos and
ppt | Short test, CIA I | |----|--------|--|-----|---|-------|--|--|----------------------------------|--| | | 3 | Reaction mechanisms: Types of reactions— aromaticity (Huckel's rule) | 2 | | K2(U) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Nearpod, Conceptual
questions, CIA I | | | 4 | Aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation. | 2 | 1 | K3(A) | Mechanism based teaching, Conceptual lecture, | Concept
mapping, Think-
Pair-Share | Interactive
videos and
ppt | slip test, problem
based questions, CIA
II | | | 5 | Heterocyclic compounds: Preparation, properties of pyrrole and pyridine | 2 | | K3(A) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive
videos and
ppt | Quiz using Nearpod,
short test, Conceptual
questions, CIA II | | IV | Thermo | odynamics and Phase Equilib | ria | | | | | | | | | 1 | Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. | 2 | 1 | K2(U) | Interactive lecture,
Conceptual lecture,
Mechanism based
teaching | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | slip test, Quick quiz
using Kahoot, CIA II | | | 2 | Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. | 2 | | K3(A) | Mechanism based teaching | Iniquiry based learning | Interactive videos and ppt | Short test, CIA II | |---|----------|--|---
---|-------|--|--|-------------------------------------|---| | | 3 | Entropy and its significance. Free energy change and its importance. Conditions for spontaneity in terms of entropy and Gibbs free energy. | 2 | | K2(U) | Conceptual lecture,
Structure property
mapping | Concept
mapping,
problem based
learning | Interactive videos and ppt | Conceptual questions,
CIA II | | | 4 | Relationship between
Gibbs free energy and
entropy. Phase Equilibria:
Phase rule - definition of
terms in it | 2 | 1 | K3(A) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Slip test, CIA II | | | 5 | Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag). | 2 | | K3(A) | Mechanism based teaching | Concept
mapping | Interactive videos and ppt | Short test, CIA II | | V | Analytic | cal Chemistry | | • | | | | | | | | 1 | Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. | 2 | 1 | K2(U) | Lecture with visualization, Demonstration, Flipped classroom | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
CIA II | | 2 | Separation and purification techniques – extraction, distillation and crystallization. | 2 | | K4(An) | Interactive lecture, Demonstration, Problem solving | Problem based
learning, Group
discussion, ,
Peer teaching | Interactive ppt | Slip test, Problem solving,
CIA II | |---|--|---|---|--------|---|--|-------------------------------------|---| | 3 | Chromatography: principle and application of column chromatography | 2 | | K3(A) | Lecture with visualization, Demonstration | Inquiry based learning, Handson model building | Interactive videos and ppt | Short test,
Assignment, CIA II | | 4 | Principle and application of paper chromatography. | 2 | 1 | K3(A) | Lecture with visualization, Demonstration | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
CIA II | | 5 | Principle and application of thin layer chromatography. | 2 | | K3 (A) | Mechanism based teaching | Think-Pair-
Share, Peer
teaching | Interactive videos and ppt | Short test, CIA II | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em/SD): Group Discussion on fertilizers **Assignment:** Applications of radioisotopes and carbon dating (Last date to submit: 01-09-2025) ## **Sample Questions** Part – A (1 mark) - 1. Match the following: - $-6C^{10}$ a) Isotope - 91Pa²³⁴ b) Isobar - $_{1}H^{2}$ c) Isotone - ₂He⁴ d) Isomer - 2. Producer gas is a mixture of - - c) CO and N₂ - b) CO₂ and N₂ c) CO and H₂ d) Propane and butane - The order of reactivity of tertiary alkyl halides in the S_N¹ reaction is high. Say true or false. The mathematical statement of the first law of thermodynamics is a) ΔE= q+w b) ΔE= q-w c) ΔE= q²-w d) ΔE= q²+w - 5. The adsorbent used in Column chromatography is _____. - a) Diethyl ether b) Hexane c) Chloroform - Part B (6 marks) d) Silica gel - 1. How will you apply radioisotopes in medicine. - 2. Describe the synthesis and uses of silicones. - 3. Define aromaticity and Huckel's rule. Give examples. - 4. Illustrate simple eutectic system with an example. - 5. Explain the principles and applications of column chromatography. ## Part - C (12 marks) - 1. Draw MO diagram of N₂ and He₂ and explain MO theory. - 2. Describe the classification of the fuels. - 3. Analyse the hybridization and geometry of CH₄ and C₆H₆. - 4. Define entropy and write its physical significance. - 5. Discuss any two techniques to separate substances from mixture. Head of the Department- Dr.R.Gladis Latha **Course Instructor** – Dr. Sr.K.Francy **Department**: Chemistry Class : II B.Sc Chemistry Title of the Course : Applied Chemistry Semester : III Course Code : CU233SE1 | Course | L | T | P | S | Credits | Inst. | Total | Ma | rks | |----------|---|---|---|---|---------|-------|-------|----------|-------| | Code | | | | | | Hours | Hours | External | Total | CU233SE1 | 2 | - | - | - | 2 | 2 | 30 | 75 | 100 | | | | | | | | | | | | ### **Learning Objectives** - 1. To transform the acquired theoretical knowledge to industry and vice-versa - 2. To familiarize with synthesis of chemicals used in day today life and to develop entrepreneurship skills. | On the succ | cessful completion of the course, student will be able to: | | |-------------|---|----| | 1 | remember the synthesis of chemicals used in day today life | K1 | | 2 | understand the effects of adulteration in food and hazards of chemicals | K2 | | 3 | illustrate the different processes of water softening and estimation of hardness of water and uses of chemicals | K3 | | 4 | analyze the action of chemicals and purity of water | K4 | | 5 | evaluate the composition of blood and validate the application of chemicals | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5- Evaluate Teaching plan Total Contact hours: 30 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|-----------|---|-------------------|---------------------|----------------------|---|---|--|---| | I | Soaps and | d Detergents | | | | | | | | | | 1 | Definition and classification of Soaps, raw materials used in the manufacture of soap manufacture of toilet soap. | 2 | 1 | K1(R)
&
K2(U) | Lecture with visual aids, Conceptual lecture | Concept
mapping | Video
lectures,
Interactive
ppt | Formative Quiz using Quizizz, slip test | | | 2 | Definition, various
types of soaps with
examples | 2 | - | K2(U) | Interactive
lecture,
Problem
solving | Problem based learning, Group discussion, Peer teaching | Interactive videos and ppt | Quiz, slip
test, Problem
solving | | | 3 | Advantages of detergents over soaps , cleansing action of soap. | 2 | - | K2(U)
&
K3(Ap) | Lecture with visual aids | Concept
mapping | Interactive
videos and
ppt | Slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | II | Chemical | s of everyday use | | | | | • | | | | | 1 | Preparation and uses of the following articles. Tooth powder, tooth paste, | 2 | 1 | K2(U)
&
K3(Ap) | Interactive
lecture, Visual
demonstration | Think-Pair-
Share,
Concept
mapping | Interactive videos and ppt | Quiz, slip
test, Structure
identification | | | | writing inks | | | | | | | task, Group
discussion | |-----|-----------|--|---|----------|-----------------------|---|--|---|--| | | 2 | Preparation and uses
of gum paste, boot
polish, talcum
powder, chalk
crayons | 2 | - | K3(Ap)
&
K4(An) | Structure
based teaching,
Visual
demonstration | Inquiry based learning | Video
lectures and
ppt | Short test,
Conceptual
questions,
Group
discussion,
CIA I | | | 3 | Preparation and uses of agar battis, phenyl and moth balls. | 2 | - | K2(U)
&
K3(Ap) | Interactive lecture, Demonstration | Concept
mapping | Video Lectures, Simulations, Slides | Short test,
CIA I | | III | Adulterat | ion in Food | | <u> </u> | | <u> </u> | | <u> </u> | <u> </u> | | | 1 | Adulteration of Food, Simple methods to find adulteration of milk, food, oils (edible and-mineral) and honey | 2 | - | K2(U)
&
K4(An) | Visual Lecture,
Mini-Lecture
Segments | Problem-
Solving,
Inquiry
Worksheets,
Problem
Solving | Video
Lecture,
Interactive
Notes | Formative
Worksheet,
Conceptual
Quiz, Group
Presentation | | | 2 | Food poisoning and its prevention, Antibodies, Food preservation, coloring, flavoring | 2 | 1 | K2(U)
&
K3(Ap) | Demonstration -based Learning, Simulations, Concept, Mapping, Flipped Classroom | Peer
Instruction,
Blended
Learning, | NPTEL
Lectures,
Simulations,
YouTube
Lectures | Quick
quizzes and
Peer
discussions | | | 3 | Sweetening agents in catering technology - Carcinogens of food materials. | 2 | - | K3(Ap)
&
K4(An) | Conceptual lecture, Interactive lecture, Structure based explanation, Demonstration | Think-Pair-
Share,
Concept
mapping | Video Lecture, Interactive Notes | Formative
Worksheet,
Conceptual
Quiz, Group
Presentation | |----|----------|---|---|---|-----------------------
---|---|----------------------------------|--| | IV | Water Tr | | | | T7.1 (7) 0 | | | **** | | | | 1 | Water treatment: hardness of water temporary and permanent hardness, disadvantages of hard water. | 2 | - | K1(R) &
K2(U) | Concept based explanation, Numerical illustration | Concept
mapping,
Think-Pair-
Share | Video
lectures and
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | 2 | Estimation of hardness by EDTA method. Water purification process, ion exchange, reverse osmosis, | 2 | 1 | K2(U)
&
K4(An) | Conceptual lecture, Case based teaching | Concept
mapping,
Group
discussion | Interactive videos and ppt | Short test,
Assignment,
Conceptual
questions,
CIA II | | | 3 | Activated charcoal treatment Desalination, Disinfection, ozone, UV, chlorination, BIS- specification of | 2 | - | K5(E) | Mechanism
based teaching,
Conceptual
lecture | Concept
mapping,
Think-Pair-
Share | Interactive videos and ppt | Short test, Quiz, Conceptual questions, CIA II | | | | drinking water. | | | | | | | | | | | | |---|--------------------|--|---|---|----------------------|--|----------------------|-------------------------------------|---|--|--|--|--| | V | Clinical Chemistry | | | | | | | | | | | | | | | 1 | Composition of blood - blood grouping - identification of blood groups and matching. | 2 | - | K1(R) &
K2(U) | Conceptual
lecture,
Structure
property
mapping | Think-Pair-
Share | Interactive videos and ppt | Short test,
CIA II | | | | | | | 2 | Determination of glucose in serum, estimation of glucose in urine | 2 | 1 | K2(U)
&
K4(An) | Mechanism
based teaching,
Structure
property
mapping | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using Nearpod, slip test, Conceptual questions, CIA II | | | | | | | 3 | Tests for salts in serum and urine. Estimation of cholesterol in serum. | 2 | - | K5(E) | Interactive
lecture | Think-Pair-
Share | Video
lectures and
ppt | Formative
Quiz using
Nearpod,
CIA II | | | | | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Entrepreneurship and Skill Development Activities: Assignment, Seminar ## **Assignment:** 1. Methods to find food adulteration 2. Hardness of water 3. Composition of blood #### **Seminar**: - 1. Types of soaps - 2. Estimation of hardness of water # Sample questions Part A - 1. What are soaps? - 2. How will you prepare gum paste? - 3. What is adulteration of food? - 4. Define hard water. - 5. What is blood grouping? Part B - 1. Differentiate between soaps and detergents. - 2. Give the preparation and uses of tooth powder and moth balls. - 3. What is food poisoning? How will you prevent it? - 4. Explain the different types of hardness of water. - 5. How will you determine glucose in serum? Part C - 1. Explain the cleansing action of soap. - 2. Write the preparation and uses of a) tooth paste b) phenyl and c) chalk crayons - 3. What are the various methods adopted to find the adulteration in food? - 4. How will you estimate the hardness of water? - 5. Explain the composition of blood. Head of the Department: Dr. R.Gladis Latha Course Instructor: Dr. S.Ajith Sinthuja Department : Chemistry Class : II B.Sc Physics Title of the Course : Elective Course III: Chemistry For Physical Sciences – I Semester : III Course Code : CU233EC1 | Course Code | T | т | P S Credits Inst. Total Hours | | Marks Marks | | | | | | |-------------|---|---|-------------------------------|---|-------------|-------|-------------|-----------------|----|-------| | Course Code | L | 1 | r | 3 | Credits | Hours | Total Hours | rs CIA External | | Total | | CU233EC1 | 4 | - | - | - | 3 | 4 | 60 | 25 | 75 | 100 | ## **Learning Objectives** 1.To know co-ordination Chemistry, Water Technology and catalysis 2.To understand Carbohydrates, Amino acids and electrochemistry | On the | successful completion of the course, student will be able to: | | |--------|--|----| | 1 | write the IUPAC name for complex, different theories to explain the bonding in coordination compounds and water technology | K1 | | 2 | explain the preparation and property of carbohydrate, amino acids and nucleic acids. | K2 | | 3 | apply/demonstrate the electrochemistry principles in corrosion, electroplating and fuel cells. | К3 | | 3 | determine the reaction rate, order of chemical reaction | K3 | | 4 | analyze the various type of photochemical process and catalysis. | K4 | | 5 | evaluate the nature of carbohydrates, reaction rates and electroplating metals | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze, K5 - Evaluate Teaching plan Total Contact hours: 60 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|---------|---|-------------------|---------------------|-----------------|---|--|---|--| | I | Chemica | l Bonding and Nuclear Che | mistry | | | | | | | | | 1 | Chemical Bonding:
Molecular Orbital Theory-
bonding, antibonding and
non-bonding orbitals. | 2 | 1 | K2(U) | Interactive lecture, Demonstration, Problem solving | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures,
Virtual lab
simulations,
Interactive
ppt | Formative Quiz using Quizizz, Conceptual questions, CIA I | | | 2 | Molecular orbital diagrams
for Hydrogen, Helium,
Nitrogen; discussion of
bond order and magnetic
properties. | 2 | | K3(A) | Lecture with visual aids and models, Demonstration, Flipped classroom | Molecular diagram drawing practice, Group discussion. | Interactive videos and ppt | Quiz, Problem solving questions, CIA I | | | 3 | Nuclear Chemistry:
Fundamental particles -
Isotopes, Isobars, Isotones
and Isomers | 2 | 1 | K3(U) | Visual concept
lecture, Structure
based learning | Think-Pair-
Share, Concept
mapping | Interactive videos and ppt | Structural identification, Conceptual questions, CIA I | | | 4 | Differences between chemical reactions and nuclear reactions - group displacement law. Nuclear binding energy - mass defect - calculations. | 2 | | K3(A) | Model based
teaching,
Demonstration,
Problem solving | Problem based learning, peer teaching. | Interactive videos and ppt | slip test, Problem
solving questions,
Group discussion,
CIA I | | | 5 | Nuclear fission and nuclear
fusion - differences – Stellar
energy. Applications of
radioisotopes – carbon | 2 | 1 | K4(An) | Visual concept
lecture, Problem
solving | Hands-on model building, Group discussion, | Video
lectures,
Virtual lab
simulations, | slip test, Group
discussion, CIA I | | | | dating, rock dating and medicinal applications. | | | | | Problem based learning | Interactive ppt | | |-----|----------|---|----------|---|--------|--|--|------------------------------|---| | II | Industri | al Chemistry | | | | | | | | | | 1 | Fuels: Fuel gases: Natural gas, water gas, semi water gas, | 2 | 1 | K2(U) | Conceptual lecture, Model based explanation | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | slip test, Quick quiz
using Kahoot, CIA I | | | 2 | carbureted water gas,
producer gas, CNG, LPG
and oil gas | 2 | | K2(U) | Mechanism based teaching, mind mapping | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Conceptual questions,
Group discussion,
CIA I | | | 3 | Silicones: Synthesis, properties and uses of silicones. | 2 | 1 | K3(A) | Interactive lecture,
Mechanism based
explanation | Group
discussion,
Concept
mapping | Interactive videos and ppt | Quiz, Group
discussion, CIA I | | | 4 | Fertilizers: Urea,
ammonium sulphate,
potassium nitrate, | 2 | | K3(A) | Application based teaching, Reaction mapping, | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Short test, Conceptual questions, CIA I | | | 5 | NPK fertilizer,
superphosphate, triple
superphosphate. | 2 | | K4(An) | Interactive lecture, Structure based explanation | Think-Pair-
Share, Concept
mapping | | Short test, CIA I | | III | Fundam | ental Concepts in Organic C | hemistry | | | | | | | | | 1 | Hybridization: Orbital overlap, hybridization and geometry of CH ₄ , C ₂ H ₄ , C ₂ H ₂ and C ₆ H ₆ . | 2 | 1 | K4(An) | Interactive lecture, Model based explanation |
Concept
mapping, hands
on model
making | Lectures
using
models | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric, mesomeric, hyper conjugation and steric-examples. | 2 | | K3(A) | Mechanism based
teaching, Problem
solving | Think-Pair-
Share | Interactive
videos and
ppt | Short test, CIA I | |----|--------|--|-----|---|-------|--|--|----------------------------------|--| | | 3 | Reaction mechanisms: Types of reactions— aromaticity (Huckel's rule) | 2 | | K2(U) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Nearpod, Conceptual
questions, CIA I | | | 4 | Aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation. | 2 | 1 | K3(A) | Mechanism based teaching, Conceptual lecture, | Concept
mapping, Think-
Pair-Share | Interactive
videos and
ppt | slip test, problem
based questions, CIA
II | | | 5 | Heterocyclic compounds: Preparation, properties of pyrrole and pyridine | 2 | | K3(A) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive
videos and
ppt | Quiz using Nearpod,
short test, Conceptual
questions, CIA II | | IV | Thermo | odynamics and Phase Equilib | ria | | | | | | | | | 1 | Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. | 2 | 1 | K2(U) | Interactive lecture,
Conceptual lecture,
Mechanism based
teaching | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | slip test, Quick quiz
using Kahoot, CIA II | | | 2 | Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. | 2 | | K3(A) | Mechanism based teaching | Iniquiry based learning | Interactive videos and ppt | Short test, CIA II | |---|----------|--|---|---|-------|--|--|-------------------------------------|---| | | 3 | Entropy and its significance. Free energy change and its importance. Conditions for spontaneity in terms of entropy and Gibbs free energy. | 2 | | K2(U) | Conceptual lecture,
Structure property
mapping | Concept
mapping,
problem based
learning | Interactive videos and ppt | Conceptual questions,
CIA II | | | 4 | Relationship between
Gibbs free energy and
entropy. Phase Equilibria:
Phase rule - definition of
terms in it | 2 | 1 | K3(A) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Slip test, CIA II | | | 5 | Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag). | 2 | | K3(A) | Mechanism based teaching | Concept
mapping | Interactive videos and ppt | Short test, CIA II | | V | Analytic | cal Chemistry | | • | | | | | | | | 1 | Introduction to qualitative and quantitative analysis. Principles of volumetric analysis. | 2 | 1 | K2(U) | Lecture with visualization, Demonstration, Flipped classroom | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
CIA II | | 2 | Separation and purification techniques – extraction, distillation and crystallization. | 2 | | K4(An) | Interactive lecture, Demonstration, Problem solving | Problem based
learning, Group
discussion, ,
Peer teaching | Interactive ppt | Slip test, Problem solving,
CIA II | |---|--|---|---|--------|---|--|-------------------------------------|---| | 3 | Chromatography: principle and application of column chromatography | 2 | | K3(A) | Lecture with visualization, Demonstration | Inquiry based learning, Handson model building | Interactive videos and ppt | Short test,
Assignment, CIA II | | 4 | Principle and application of paper chromatography. | 2 | 1 | K3(A) | Lecture with visualization, Demonstration | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
CIA II | | 5 | Principle and application of thin layer chromatography. | 2 | | K3 (A) | Mechanism based teaching | Think-Pair-
Share, Peer
teaching | Interactive videos and ppt | Short test, CIA II | Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em/SD): Group Discussion on fertilizers **Assignment:** Applications of radioisotopes and carbon dating (Last date to submit: 01-09-2025) ## Sample Questions Part – A (1 mark) - 1. Match the following: - a) Isotope ${}_{6}C^{10}$ - b) Isobar 91Pa²³⁴ - c) Isotone ₁H² - d) Isomer ₂He⁴ - 2. Producer gas is a mixture of - d) CO and N₂ - b) CO₂ and N₂ c) CO and H₂ - d) Propane and butane - 3. The order of reactivity of tertiary alkyl halides in the S_N^1 reaction is high. Say true or false. - 4. The mathematical statement of the first law of thermodynamics is - b) $\Delta E = q + w$ - b) $\Delta E = q-w$ - c) $\Delta E = q^2 w$ - d) $\Delta E = q^2 + w$ - 5. The adsorbent used in Column chromatography is_____. - b) Diethyl ether - b) Hexane - c) Chloroform - d) Silica gel Part - B (6 marks) - 1. How will you apply radioisotopes in medicine. - 2. Describe the synthesis and uses of silicones. - 3. Define aromaticity and Huckel's rule. Give examples. - 4. Illustrate simple eutectic system with an example. - 5. Explain the principles and applications of column chromatography. Part - C (12 marks) - 1. Draw MO diagram of N₂ and He₂ and explain MO theory. - 2. Describe the classification of the fuels. - 3. Analyse the hybridization and geometry of CH₄ and C₆H₆. - 4. Define entropy and write its physical significance. - 5. Discuss any two techniques to separate substances from mixture. Head of the Department- Dr. R. Gladis Latha Course Instructor: Dr. Sr. K. Francy Department : Chemistry Class : II B.Sc Physics Title of the Course : Elective Lab Course III: Chemistry Practical For Physical Sciences - Volumetric Analysis Semester : III Course Code : CU233EP1 | Course Code | T | Т | D | C | Credits | Inst. | Total Hours | | Marks | | |-------------|---|---|---|---|---------|-------|-------------|--------------|-------|-------| | Course Coue | L | 1 | Г | 3 | Credits | Hours | Total Hours | CIA External | | Total | | CU233EP1 | - | - | 2 | - | 2 | 2 | 30 | 25 | 75 | 100 | ## **Learning Objectives** 1.To understand the basics of preparation of solutions. 2.To understand the principles and practical experience of volumetric analysis. | On the s | uccessful completion of the course, student will be able to: | | |----------|---|----| | 1 | understand the principles of titrimetric methods. | K1 | | 2 | gain knowledge on the usage of standard flask, pipette and burette. | K2 | | 3 | design, carry out, record and interpret the results of various titrations and apply their skill in the estimation of various compounds. | К3 | | 4 | analyze the suitable indicators for various titrations | K4 | | 5 | evaluate the end points of various titrations | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze, K5 - Evaluate Teaching Plan Total Contact hours: 30(Including practical and assessment) | Unit | Topic | Practical
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/
Evaluation
Methods | |------|---|--------------------|---------------------|--------------------|---------------|-------------------------------------|------------------------------------|---| | I | | | | | | MEHIOU | | Methods | | | VOLUMETRIC ANALYSIS Acidimetry 1. Estimation of sulphuric acid using standard oxalic acid. Alkalimetry 2. Estimation of sodium hydroxide using standard sodiumcarbonate. Permanganometry 3. Estimation of oxalic acid using standard ferrous sulphate. 4. Estimation of ferrous sulphate using KMnO4. Dichrometry 5. Estimation of Ferrous Sulphate using standard dichromate 6. Estimation of Ferrous Ammonium Sulphate using standard dichromate | 25 | 5 | K3(Ap) & K4(An) | Demonstration | Experiential and lab based learning | Simulations
and Virtual
Labs |
Performance,
Observation,
Reporting, Model
examination | | Complexometry | | | | | |-----------------------------|--|--|--|--| | | | | | | | 7. Estimation of zinc using | | | | | | EDTA. | | | | | | 8. Estimation of magnesium | | | | | | | | | | | | 8 | | | | | | using EDTA. | | | | | Head of the Department: Dr. R. Gladis Latha Practical-in-Charge: Dr. Y.Christabel Shaji **Department**: Chemistry Class : III B.Sc Chemistry Title of the Course : Organic Chemistry - I Semester : V Course Code : CU235CC1 | Course Code | Code L T P S Credits Inst. Hours Tot | | Total Hours | Marks | | | | | | | |-------------|--------------------------------------|---|-------------|-------|---------|--------------|-------------|-----|----------|-------| | Course Coue | | • | • | | Creates | 11190 110015 | Total Hours | CIA | External | Total | | CU235CC1 | 5 | - | - | - | 4 | 5 | 75 | 25 | 75 | 100 | ## **Learning Objectives:** - 1. To understand the stereochemical concepts, chemical transformations and spectroscopic characterization of organic compounds. - 2. To know the chemistry of nitro compounds, amines and heterocyclic compounds. | On the | successful completion of the course, students will be able to: | | |--------|---|----| | 1. | recall the fundamental concepts of stereochemistry, nitrogen compounds, heterocyclic compounds, and spectroscopy. | K1 | | 2. | explain the preparation and properties of organic compounds and interpret the principles of UV-Visible and IR spectroscopy for the identification of organic compounds. | K2 | | 3. | apply the stereochemical notations, organic reaction outcomes, and spectroscopic rules to identify molecular properties. | К3 | | 4. | analyze the properties, reactions and spectral data of organic compounds. | K4 | | 5. | evaluate the significance of stereochemistry, synthetic methods, and spectroscopic data for understanding molecular interactions, synthesis, and structure determination. | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Topic | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student Centric
Method | E-Resources | Assessment/
Evaluation Methods | |------|----------|--|-------------------|---------------------|--------------------|---|--|---|--| | I | Stereoch | emistry | | 1 | | | | | | | | 1 | Optical Isomerism: Optical activity - elements of symmetry - specific rotation - asymmetry - enantiomers and diastereoisomers. Molecules with one and two chiral centres - lactic and tartaric acids. | 2 | 1 | K1(R) &
K2(U) | Lecture with visual aids and models, Demonstration, Flipped classroom | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures,
Virtual lab
simulations,
Interactive
ppt | Formative Quiz using Quizizz, slip test, Conceptual questions, CIA I | | | 2 | Racemisation - methods of racemization - resolution - methods of resolution. Cahn-Ingold and Prelog rules - R/S notations for one and two chiral centres. | 2 | | K3(Ap) &
K4(An) | Interactive lecture, Demonstration, Problem solving | Group
discussion,
Hands-on model
building, Peer
teaching | Interactive
videos and
ppt | Quiz, slip test,
Problem solving,
CIA I | | | 3 | Optical activity of allenes
and biphenyls. Chirality
and stereochemical
significance of Ayurvedic
medicine - santalol -
menthol and camphor | 2 | 1 | K3(Ap) &
K4(An) | Visual concept
lecture, Structure
based learning | Think-Pair-
Share, Concept
mapping | Interactive
videos and
ppt | Slip test, Quick quiz using Kahoot, Structural identification, Conceptual questions, CIA I | | | 4 | Projection Formula: Flying wedge, Fischer Projection, Newmann and Sawhorse representations and their interconversions. | 2 | | K3(Ap) | Model based
teaching,
Demonstration,
Problem solving | Molecular drawing practice, Problem based learning | Interactive videos and ppt | Quiz, slip test,
Problem solving,
Group discussion,
CIA I | | | 6 | Geometrical isomerism: Cis-trans isomerism - E/Z notations. Methods of distinguishing geometrical isomers. Conformational | 2 | 1 | K4(An) K3(Ap) & | Visual concept lecture, Rule based teaching, Demonstration, Problem solving Lecture with visual | Hands-on model
building, Group
discussion,
Problem based
learning | Video lectures, Virtual lab simulations, Interactive ppt Interactive | Quiz, slip test, Problem solving, Group discussion, Structure sorting game, CIA I Formative Quiz using | |----|---------|--|----|---|--------------------|--|---|--|---| | | | isomerism: Conformational analysis of ethane, butane and cyclohexane. | | | K4(An) | aids and models, Demonstration, Flipped classroom | Share, Concept
mapping, Group
discussion | videos and ppt | Quizizz, slip test,
Conceptual questions,
CIA I | | II | Chemist | ry of Nitrogen Compounds | Į. | | 1 | l | l | • | | | | 1 | Nitroalkanes and nitroarenes: Preparation and chemical reactions. Pseudo acid character and nitro - aci nitro tautomerism. | 2 | 1 | K1(R) &
K2(U) | Conceptual lecture,
Model based
explanation | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Alkyl and aryl amines: Preparation of alkyl and aryl amines - Ritter reaction - Hofmann ammonolysis - Leuckart reaction - Ullmann reaction and Gabriel phthalimide reaction. | 2 | | K3(Ap) &
K4(An) | Mechanism based
teaching, Reaction
mapping, Concept
mapping | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Short test, Quick quiz
using Kahoot,
Conceptual questions,
Group discussion,
CIA I | | | 3 | Physical and chemical properties of alkyl and aryl amines. Basicity of amines. | 2 | 2 | K2(U) | Interactive lecture,
Mechanism based
explanation | Group
discussion,
Concept
mapping | Interactive videos and ppt | Quiz, slip test, Group
discussion, CIA I | | | 4 | Distinction between primary, secondary and tertiary amines - Hinsberg's and Hofmann's method. | 3 | | K3(Ap) & K4(An) | Mechanism based
teaching, Reaction
mapping, Concept
mapping | Problem based
learning, Think-
Pair-Share,
Concept
mapping | Video
lectures and
ppt | Short test, Conceptual
questions, Group
discussion,
CIA I | |-----|---------|--|---|---|--------------------|--|--|------------------------------|---| | | 5 | Diazonium compounds: Preparation and properties of diazomethane and benzene diazonium chloride. | 3 | | K3(Ap) &
K4(An) | Conceptual lecture, Interactive lecture, Structure based explanation | Think-Pair-
Share, Concept
mapping | | Short test, CIA I | | III | Heteroc | yclic Compounds – I | | | | | | | | | | 1 | General characteristics -
aromatic character and
reactivity of pyrrole -
furan and thiophene. | 2 | 2 | K1(R) &
K2(U) | Interactive lecture,
Conceptual lecture | Think-Pair-
Share, Concept
mapping | Video
lectures and
ppt | Formative Quiz using Quizizz, slip test, Quick quiz using Kahoot, Conceptual questions, CIA I | | | 2 | Pyrrole: Preparation from succinimide and Paal Knorr synthesis. | 2 | | K3(Ap) | Mechanism based teaching | Think-Pair-
Share | Interactive videos and ppt | Short test, CIA I | | | 3 | Reactions - reduction -
basic character - acidic
character - electrophilic
substitution reactions and
ring opening. | 2 | | K3(Ap) &
K4(An) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Nearpod, Conceptual
questions, CIA I | | | 4 | Furan: Preparation from mucic acid and pentosan. Reactions - hydrogenation - reaction with oxygen - Diels Alder reactions - formation of thiophene and pyrrole and electrophilic substitution reactions. | 3 | 1 | K3(Ap) &
K4(An) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Think-
Pair-Share | Interactive videos and ppt | Formative quiz using Nearpod, slip test, Conceptual questions, CIA II | | 137 | 5 | Thiophene:
Preparation from acetylene. Reactions - reduction - oxidation and electrophilic substitution reactions. | 3 | | K3(Ap) &
K4(An) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quiz using Nearpod,
short test, Conceptual
questions, CIA II | |-----|---------|--|---|---|--------------------|--|---|----------------------------------|--| | IV | Heteroc | yclic Compounds – II | 2 | 1 | V2(II) 0 | Internative last- | Think-Pair- | V: 1 | Formative Oni- veige | | | 1 | Pyridine: Preparation from acetylene. Physical properties. Reactions - basic character - oxidation - reduction - electrophilic substitution and nucleophilic substitution reactions. | 2 | I | K2(U) &
K3(Ap) | Interactive lecture, Conceptual lecture, Mechanism based teaching | Share, Concept
mapping | Video
lectures and
ppt | Formative Quiz using Nearpod, slip test, Quick quiz using Kahoot, Conceptual questions, CIA II | | | 2 | Quinoline: Skraup
synthesis and
Friedlander's synthesis.
Reactions - basic nature -
reduction - oxidation - | 3 | | K3(Ap) | Mechanism based teaching | Think-Pair-
Share | Interactive videos and ppt | Short test, CIA II | | | 3 | Electrophilic substitutions - nucleophilic substitutions and Chichibabin reaction. | 2 | | K3(Ap) &
K4(An) | Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive videos and ppt | Quick quiz using
Socrative, Conceptual
questions, CIA II | | | 4 | Isoquinoline: Preparation from Bischler-Napieralski reaction. Reactions - reduction - oxidation and electrophilic substitution reaction. | 2 | 2 | K2(U) &
K3(Ap) | Mechanism based
teaching,
Conceptual lecture,
Structure property
mapping | Concept
mapping, Group
discussion | Interactive
videos and
ppt | Slip test, CIA II | | | 5 | Indole: Fischer indole synthesis and reactions of indole. | 3 | | K2(U) &
K3(Ap) | Mechanism based teaching | Think-Pair-
Share | Interactive videos and ppt | Short test, CIA II | | V | Spectroscopy – I | | | | | | | | | | | | |---|------------------|--|---|---|-------------------|--|---|-------------------------------------|--|--|--|--| | | 1 | UV-Visible spectroscopy: principle - instrumentation - types of electronic excitations - chromophore - auxochrome - bathochromic - hypsochromic - hypochromic and hyperchromic shifts. | 2 | 2 | K2(U) | Lecture with visualization, Demonstration, Flipped classroom | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
Conceptual questions,
CIA II | | | | | | | | 3 | | K3(Ap) &
K5(E) | Interactive lecture, Demonstration, Problem solving | Problem based
learning, Group
discussion,
Hands-on model
building, Peer
teaching | Interactive ppt | Quiz, slip test,
Problem solving,
CIA II | | | | | | 3 | UV-Visible spectroscopy of ancient dyes - indigo - alizarin red and curcumin. | 2 | | K2(U) | Lecture with visualization, Flipped classroom | Inquiry based learning | Interactive videos and ppt | Short test,
Assignment, CIA II | | | | | | 4 | IR spectroscopy: principle - instrumentation - Hooke's law - types of molecular vibrations - normal degrees of freedom and finger print region. | 2 | 1 | K2(U) | Lecture with visualization, Demonstration, Flipped classroom | Concept
mapping | Virtual labs,
Interactive
ppt | Formative Quiz using
Nearpod, slip test,
Conceptual questions,
CIA II | | | | | | 5 | Factors influencing the vibrational frequency. Identification of functional groups in organic compounds. | 3 | | K2(U) &
K5(E) | Mechanism based teaching | Think-Pair-
Share | Interactive videos and ppt | Quick Quiz with
Kahoot, Short test,
CIA II | | | | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability and Skill Development Activities (SD): Group discussion and Problem solving on R,S nomenclature and Absorption of λ_{max} values Assignment: UV-Visible spectroscopy of ancient dyes (Last date to submit: 01-09-2025) ### Sample questions #### **PART A** - 1. Arrange the conformers of cyclohexane in the increasing order of stability. (K2-U, CO-2) - a) Chair < Boat < Twist boat < Half-chair b) Half-chair < Boat < Twist boat < Chair - c) Chair < Twist boat < Half-chair < Boat d) Chair < Twist boat < Boat < Half-chair - 2. Carbylamine test is a diagnostic test for ______. (K2-U, CO-2) - 3. Point out the hybridization of nitrogen in pyrrole. (K2-U, CO-2) - a) sp b) sp² c) sp³ d) sp³d - 4. Predict the product of the following reaction: (K3-Ap, CO-3) 5. Calculate the λ_{max} value of the following compound: (K4-An, CO-4) #### **PART B** - 1. Biphenyls having small groups in the ortho-positions are optically inactive. Justify. (K5-E, CO-5) - 2. How will you separate mixture of amines by Hofmann's method? (K3-Ap, CO-3) - 3. How will you convert pyrrole to pyrrolidine, 2,5-dihydropyrrole? (K3-Ap, CO-3) - 4. Prove that electrophilic substitution reaction of pyridine occurs at 3rd position. (K5-E, CO-5) - 5. Discuss the types of molecular vibrations in IR spectroscopy. (K2-U, CO-2) #### **PART C** 1. Assign R or S configuration for the following compounds: (K4-An, CO-4) (i) $$H \longrightarrow CH_3$$ (iii) $H \longrightarrow CH_3$ (iii) $H \longrightarrow CH_3$ CH_3 CH_3 CH_2 CH_3 CH_3 CH_4 CH_5 - 2. Deduce the mechanism of Ritter reaction and Hoffmann degradation. (K4-An, CO-4) - 3. Correlate the electrophilic substitution reactions of pyrrole, furan and thiophene. (K4-An, CO-4) - 4. Apply the mechanism of amination, arylation and halogenations on pyridine and give the nucleophilic substituted products. (K3-Ap, CO-3) Course Instructor: Dr. Sr. K. Francy 5. Calculate the λ_{max} for the following compounds: **(K4-An, CO-4)** $$(i) \qquad (ii) \qquad (iv) \qquad (iv)$$ **Department**: Chemistry Class : III B.Sc Chemistry Title of the Course : Core Course VI : Physical Chemistry Semester : V Course Code : CU235CC2 | Course Code | T | т | D | C | Credits | Inst. Hours | TotalHours | Marks | | | | | |-------------|---|---|---|---|---------|-------------|------------|-------|----------|-------|--|--| | Course Coue | L | 1 | Г | 3 | Credits | mst. nours | | CIA | External | Total | | | | CU235CC2 | 5 | - | - | - | 4 | 5 | 75 | 25 | 75 | 100 | | | ## **Learning Objectives:** - 1. To know the properties of solutions and kinetics of reactions. - 2. To analyze the catalysis and point groups of compounds. | | On the successful completion of the course, students will be able to: | | |---|--|----| | 1 | define the basic terms in solutions, colligative properties, chemical kinetics, catalysis and adsorption | K1 | | 2 | understand the concepts of group theory and determine the point groups of molecules | K2 | | 3 | apply the concepts of chemical kinetics to predict the rate and order of the reaction and predict the effect of temperature on reaction rate | К3 | | 4 | analyze the colligative properties and characteristics of catalytic and photochemical reactions | K4 | | 5 | evaluate the rate of catalytic reactions and utilize the concepts of photochemistry in fluorescence, phosphorescence, chemiluminescence and colour perception of vision. | K5 | K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 – Evaluate Teaching plan Total Contact hours: 75 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teachin
g hours | Assessme
nt hours | Cognitiv
e level | Pedagogy | Student
Centric
Methods | E-
resources | Assessment/
Evaluation | |------|----------|---|--------------------|----------------------|---------------------|---------------------------------|-------------------------------|-----------------------------------|--| | I | Solution | s and Colligative Properties | | | | | | | | | | 1 | Solutions of non-electrolytes – solutions of liquids in liquids – vapour pressure of non-ideal solutions - type I, type II and type III. | 2 | 1 | K1(R) | Lecture
method | Think – pair -
share | Lecture
with videos | Oral test | | | 2 | Vapour pressure - composition and boiling point - composition curves of completely miscible binary solutions - type I, type II and type III. | 2 | | K2(U) | Interactive
lecture | Inquiry based
learning | Lecture
with
Ppt | Slip test,
quiz – Nearpod
and
CIA I | | | 3 | Theory of fractional, azeotropic and steam distillations/ Solubility of partially miscible liquids - phenol-water system, triethylamine – water system and nicotine water system. | 2 | 1 | K2(U)&
K3(Ap) | Lecture
with
illustration | Formulating discussions | Lecture
with ppt
and
videos | Short test &
Assignment - I | | | 4 | Colligative properties – definition and examples. Osmotic pressure, Laws of osmotic | 2 | | K2(U)&
K4(An) | Problem solving | Problem based learning | Lecture with videos | Quiz –
Mentimeter
and slip test | | | 5 | pressure /van't Hoff theory of dilute solutions - isotonic solution. Elevation of boiling point - molol boiling point elevation constant or ebullioscopic constant - determination of molar mass from elevation of boiling point. | 2 | 1 | K2(U) &
K3(Ap) | Heuristic teaching | Active learning | Lecture
with ppt and
videos | Quiz - Quizizz
and slip test | |----|--------------|--|---|---|-------------------|------------------------------|--------------------------------|-----------------------------------|--| | | 6 | Depression of freezing point - molol freezing point depression constant or cryoscopic constant - determination of molar mass by depression of freezing point. Abnormal results and van't Hoff factor. | 2 | | K2(U)&
K5(E) | Solving
problem
method | Problem based learning | Lecture
with
videos | Quiz - Quizizz
, slip test and
Formative
assessment - I | | II | Chemica
1 | Rate of reaction – expression | 3 | 1 | K2(U) | Lecturing | Live | Videos and | Quiz - Slido | | | | of rate – factors influencing rate of reaction – order and molecularity - definition and examples – differences between order and molecularity–zero, first and second order reaction – definition- examples. | - | 1 | | J | demonstration
of concepts | ppt | | | | 2 | Derivation of rate constant
and half life period. Methods
of determining order of
reaction –differential, | 2 | | K2(U) | Problem
solving | Solving
complex
problems | Video
lessons | Quiz -
Nearpod | | | | integral, half-life and
Ostwald's isolation methods. | | | | | | | | |-----|---|---|---|---|-----------------------|---------------------------------------|--------------------------------|-----------------------------------|---| | | 3 | Temperature dependence of reaction rates (Arrhenius equation) –significance – temperature coefficient – energy of activation – effect of catalyst | 3 | 1 | K2(U) &
K4(An) | Blended
teaching | Self directed
learning | Videos and ppt | Quiz – Slido
and Formative
assessment - I | | | 4 | Calculation of energy of activation—theories of reaction rates — collision theory of bimolecular gaseous reactions, activated complex theory | 2 | 1 | K3(Ap)
&
K4(An) | Problem
solving
method | Solving
complex
problems | Lecture with videos | Slip test | | | 5 | Comparison of collision theory and activated complex theory. Lindeman's theory of unimolecular reactions | 2 | | K3(Ap) | Reflective
pedagogical
approach | Concept
learning | Lecture
lessons | Quiz –
Mentimeter
and
Assignment -
II | | III | | is and Adsorption | | 1 | | T | | T - | | | | 1 | Catalysis- characteristics-
different types -
homogeneous,
heterogeneous, acid-base
catalysis and auto catalysis | 2 | 1 | K1(R) | Lecture
method | Concept
mapping | Lecture
with ppt and
videos | Group
discussion | | | 2 | Catalysis-theories of catalysis-intermediate compound formation theory and adsorption theory | 2 | | K4 (An) | Lecture
with
illustration | Collaborative learning | Lecture with illustrations | Slip test and
Formative
assessment - II | | | 3 | Kinetics of enzyme catalysis -Michaelis-Menten equation - derivation—applications of catalysis. | 2 | 1 | K1(R) & K4 (An) | Flipped classroom | Inquiry based learning | Lecture
lessons | Group
discussion | |----|---------|---|---|---|--------------------|--------------------------------|---------------------------|-----------------------------|--| | | 4 | Adsorption – definition-
physisorption and
chemisorption – differences –
factors influencing adsorption
of gases on solids | 2 | | K1(R) &
K4 (An) | Interactive lecture | Think- pair-
share | Interactive videos and ppt | Quiz –
Mentimeter
and Formative
assessment - II | | | 5 | Adsorption isotherms –types - Freundlich and Langmuir monolayer adsorption isotherms | 2 | 1 | K4 (An) | Concept
based
teaching | Concept
mapping | Lecture with ppt and videos | Quiz – google
forms | | | 6 | Gibbs adsorption isotherm -
BET theory of multilayer
adsorption – applications of
adsorption . Adsorption
indicators. | 2 | | K1(R) &
K4 (An) | Mechanism
based
teaching | Group
discussion | Lecture
lessons | Class test | | IV | Group t | heory | | | | | | | | | | 1 | Symmetry elements and symmetry operations – definition of identity (E), proper rotational axis (n) – mirror plane (σ) – inversion centre (i) and rotation reflection axis (Sn). | 3 | 1 | K2 (U) | Lecture with models | Inquiry based
learning | Lecture
lessons | Quiz -
Nearpod | | | 2 | Symmetry operations generated by symmetry elements- H ₂ O, NH ₃ , BF ₃ , [PtCl ₄] ²⁻ , H ₂ O ₂ (cis and trans) and CH 4 as examples. | 2 | | K2(U)
& K5 (E) | Interactive
lecture | Blended
learning, Group
discussion | Lecture
with ppt | Group discussion and assignment II - Google classroom | |---|---------|--|---|---|-------------------|---|---|-----------------------------------|---| | | 3 | Matrix representation of symmetry operations. Comparison of molecular and crystallographic symmetry. | 3 | 1 | K2(U) | Structure
based
teaching | Reflective
learning | Lecture with ppt and videos | MCQ -
Mentimeter | | | 4 | Group postulates – abelian
and cyclic groups – group
multiplication table | 2 | | K2(U)
& K5 (E) | Model based teaching & Structure based teaching | Collaborative
learning | Lecture
with ppt | Short test | | | 5 | Molecular point groups – Point group assignment to simple molecules like H ₂ , HCl, CO, H ₂ O, NH ₃ and CO ₂ . Determination of point groups. | 2 | 1 | K5 (E) | Lecture
with ppt | Think-pair-
share, Group
discussion | Lecture
with ppt and
videos | Quiz - Kahoot
and slip test | | V | Photoch | nemistry | | | • | | | | | | | 1 | Laws of photo chemistry – Lambert – Beer, Grothus – Draper and Stark – Einstein. Quantum efficiency. Photochemical reactions | 2 | 1 | K4 (An) | Lecture
method | Concept
mapping | Lecture
lessons | MCQ -
mentimeter | | 2 | rate law – Kinetics of H ₂ -Cl ₂ , H ₂ -Br ₂ and H ₂ -I ₂ reactions, comparison between thermal and photochemical reactions. | 3 | | K4 (An) | Mechanism
based
teaching | Reflective
learning | Lecture
with video
and ppt | Quiz – google
forms | |---|--|---|---|-----------------------|---------------------------------|---------------------------|-----------------------------------|------------------------| | 3 | Fluorescence – applications including fluorimetry – sensitised fluorescence, phosphorescence – applications | 3 | 1 | K5 (E) | Teaching with concepts | Concept
mapping | Lecture
lessons | Group
discussion | | 4 | chemiluminescence and photosensitisation – examples | 2 | | K4(An)
&
K5 (E) | Blended
teaching | Self directed learning | Video
lecture | Quiz –
mentimeter | | 5 | Chemistry of Vision – 11 cis retinal – vitamin A as a precursor - colour perception of vision. (Problems wherever necessary). | 2 | 1 | K4(An)
&
K5 (E) | Lecture
with
illustration | Collaborative
learning | Lecture
with ppt and
Videos | Slip test | # Course Focusing on Employability/ Entrepreneurship/ Skill Development: Employability ## **Activities (Em):** Temperature coefficient and energy of activation - Group discussion. Catalysis and its characteristics - Group discussion. Symmetry elements and symmetry operations - Group discussion. ### **Assignment:** - 1. Theory of fractional azeotropic and steam distillations Assignment - 2. Comparison of collision theory and activated complex theory Assignment. # **Sample questions** ## Part - A | 1. When the | ne rate of the reaction is e | equal to the rate constant | , the order of the reaction is | | |-------------|------------------------------|----------------------------|---------------------------------------|--------------------| | a) zei | o order b) fir | st order | c) second order | d) third order | | 2 3371.1.1. | C. 41 C. 11 | | | | | | one of the following is an | | | | | , | ammonia in contact with | , , | drous CaCl ₂ with water | | | , | silica gel in contact with | ž , | he above | | | | f the following is not a co | | | | | , | Surface tension | | notic pressure | | | | Vapour pressure depressi | | d) Boiling point elevation | | | | nolecule is an abelian gro | | | | | 5. The qua | ntum yield of photochen | nical
decomposition of H | | | | a) | 1 b) 0 | c) 2 | d) 3 | | | | | | Part - B | | | | s the factors influencing | | | | | 2. Differ | entiate between physisorp | ption and chemisorption. | | | | 3. How v | vill you determine the mo | olar mass from elevation | of boiling point? | | | 4. Compa | are molecular and crystal | lographic symmetry. | | | | 5. Discus | s the kinetics of photoch | emical decomposition of | hydrogen iodide | | | | | | Part - C | | | 1 Domizzo | Arrhenius equation and | vymita ita aignifiaanaaa | | | | | Michaelis-Menten equat | _ | | | | | - | | amain a tha maalan maaa bay damaaaian | of fracting point? | | | · · | <u> </u> | ermine the molar mass by depression | of freezing point? | | - | n the symmetry elements | |) DE | | | a) | CH ₄ | b) H ₂ O | c) BF ₃ | | | 5. Derive | he quantum yield of the | photochemical combinat | ion of hydrogen and chlorine. | | | | - · | - | - | | Head of the Department: Dr. R. Gladis Latha Course Instructor: Dr. M. Anitha Malbi **Department**: Chemistry Class : III B.Sc Chemistry Title of the Course: Core Lab Course V: Physical Chemistry Practical - II Semester : V Course Code : CU235CP1 | Course Code | L | T | P | S | Credits | Inst. Hours | Total Hours | | Marks | | |-------------|---|---|---|---|---------|-------------|-------------|----------|----------|-------| | | | | | | | | | Internal | External | Total | | CU235CP1 | - | - | 5 | - | 4 | 5 | 75 | - | 75 | 100 | | | | | | | | | | | | | ### **Learning Objectives** - 1. To understand the basic concepts and principles of phase rule, chemical kinetics, molecular weight determination, adsorption and chromatography. - 2. To determine the eutectic temperature, concentration, rate constant, molecular weight and adsorption isotherm of compounds. | On th | e successful completion of the course, students will be able to: | | |-------|---|-----------| | 1. | recall the theoretical concepts of physical chemistry. | K1 | | 2. | explain the methodology for determining the physical constants and concentration of compounds. | K2 | | 3. | apply the principles of phase rule, chemical kinetics, molecular weight determination, adsorption and chromatographic techniques for various experiments. | К3 | | 4. | analyze the composition, rate constant and concentration of unknown solutions. | K4 | | 5. | evaluate the physical and chemical parameters of compounds. | K5 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate Teaching plan Total Contact hours: 75 (Including practical and assessment) | Unit | Topic | Practical
Hours | Assessment
Hours | Cognitiv
e level | Pedagogy | Student
Centric
Method | E-
Resources | Assessment/
Evaluation Methods | |------|---|--------------------|---------------------|-----------------------|---------------|---|------------------------------------|---| | I | Phase diagrams 1. Determination of eutectic temperature and composition of naphthalene-diphenyl system. 2. Determination of Critical Solution Temperature (CST) of Phenol-Water system and determination of the concentration of the unknown NaCl solution. | 18 | 2 | K1(R) & K4(An) | Demonstration | Experiential
and lab based
learning | Simulations
and Virtual
Labs | Performance,
Observation,
Reporting, Model
examination | | Π | Chemical Kinetics 3. Determination of rate constant of acid catalyzed hydrolysis of an ester (methyl acetate). 4. Determination of order of reaction between iodide and persulphate (initial rate method). 5. Polarimetry: Determination of rate constant of acid catalyzed inversion of cane sugar | 18 | 2 | K3(Ap)
&
K4(An) | Demonstration | Experiential
and lab based
learning | Simulations
and Virtual
Labs | Performance,
Observation,
Reporting, Model
examination | | III | Molecular weight | 18 | 2 | K2(U) & | Demonstration | Experiential | Simulations | Performance, | |-----|--|----|---|---------|---------------|---------------|-------------|------------------| | | 6. Determination of molecular weight | | | K4(An) | | and lab based | and Virtual | Observation, | | | by Rast macro method. | | | | | learning | Labs | Reporting, Model | | | 7. Determination of molecular weight | | | | | | | examination | | | by transition temperature method | | | | | | | | | | | | | | | | | | | IV | Adsorption | 14 | 1 | K3(Ap) | Demonstration | Experiential | Simulations | Performance, | | | 1. Construction of Freundlich isotherm | | | & | | and lab based | and Virtual | Observation, | | | for the adsorption of acetic acid on | | | K5(E) | | learning | Labs | Reporting, Model | | | activated charcoal | | | | | _ | | examination | | | 2. Chromatography (Course work) | | | | | | | | | | 3. Column chromatography | | | | | | | | | | 4. Thin Layer Chromatography | | | | | | | | | | | | | | | | | | Head of the Department: Dr. R.Gladis Latha Course Instructor- Dr.S.Ajith Sinthuja **Department** : Chemistry Class : III B.Sc. Chemistry Title of the Course : Discipline Specific Elective-Inorganic Chemistry-I Semester : V Course Code : CU235DE1 | Course Code | L | Т | P | S | Credits | Inst. Hours | Total | | Marks | | |-------------|---|---|---|---|---------|-------------|-------|-----|----------|-------| | | | | | | | | Hours | CIA | External | Total | | CU235DE1 | 4 | _ | _ | _ | 3 | 4 | 60 | 25 | 75 | 100 | ## **Learning Objectives:** - 1. To gain basic knowledge on nomenclature, isomerism, structure and applications of coordination complexes. - 2. To recognize the importance of metalloenzymes, inorganic polymers and inner transition elements | On tl | he successful completion of the course, student will be able to: | | |-------|--|----| | 1. | know the principles, characteristics, classification and applications of coordination chemistry, organometallic compounds, metalloenzymes and inorganic polymers | K1 | | 2. | explain the principles, characteristics, classification, and applications of coordination chemistry, organometallic compounds, metalloenzymes and inorganic polymers | К2 | | 3. | apply inorganic substances in scientific and industrial contexts. | К3 | | 4. | analyze the chemistry and characteristics of coordination compounds, organometallic compounds, metalloenzymes, and inorganic polymers | K4 | | 5. | assess properties of inorganic compounds | K5 | K1 - Remember; K2 - Understand; K3- Apply; K4 - Analyse; K5- Evaluate Teaching plan Total hours: 60 (Including lectures, assignments and tests) | Unit | Module | Торіс | Teaching
Hours | Assessment
Hours | Cognitive
level | Pedagogy | Student
Centric
Method | E-Resources | Assessment/ Evaluation Methods | |------|----------|---|-------------------|---------------------|--------------------|---|--|----------------------------------|---| | I | Co-ordin | ation Chemistry – I | | | | | | | | | | 1 | IUPAC Nomenclature of coordination compounds, Isomerism in coordination compounds. | 2 | 1 | K1(R) &
K3 (Ap) | Lecture with
Visual Aids
such as ppt | Inquiry- Based Learning, Peer Teaching, | PPT, E-Notes | Formative Quiz slip test, Conceptual questions, CIA I | | | 2 | Werner's coordination
theory – effective atomic
number –interpretation
of geometry and
magnetic properties by
Pauling's theory | 2 | | K2(U) | Visual
Lecture,Mini-
Lecture
Segments | Problem-
Solving | Video
Lecture | Quiz, slip test,
Problem
solving,
CIA I | | | 3 | Chelates – types of ligands forming chelates – stability of chelates, applications of chelates in qualitative and quantitative analysis– | 2 | 1 | K3(Ap) | Lecture with
visualization,
Concept-based
discussion | Collaborative
Learning,
Concept
Mapping | Interactive
videos and
ppt | Slip test,
Conceptual
questions, CIA
I | | | 4 | Application of DMG and oxine in gravimetric analysis – estimation of hardness of water using EDTA, metal ion indicators. | 2 | 1 | K3(Ap) | Lecture with ppt | Participatory
learning | Video lectures, Virtual lab simulations, Interactive ppt | Group
discussion,
CIA I | |----|----------|---|---|---|-------------------|---|---|--|--| | | 5 | Role of metal chelates in living systems – haemoglobin and chlorophyll | 1 | | K4(An) | Lecture with ppt | Peer
Learning, | Interactive videos and ppt | Quiz, slip test,
Group
discussion,
CIA I | | II | Co-ordin | nation Chemistry – II | | | | | | | | | | 1 | Crystal field theory – Crystal field splitting of energy levels in octahedral and tetrahedral complexes, | 2 | 1 | K1(R) &
K3(Ap) | Demonstration -based Learning: Simulations,
Concept Mapping | Peer
Instruction,
Blended
Learning | NPTEL Lectures, Simulations, YouTube Lectures | Formative Quiz, slip test, Conceptual questions, CIA I | | | 2 | Crystal field stabilization energy (CFSE), spectrochemical series - calculation of CFSE in octahedral and tetrahedral complexes | 2 | | K2(U) | Interactive lecture, Demonstration , Problem solving | Group
discussion,
Peer teaching | Interactive
videos and
ppt | Short test,
Conceptual
questions,
Group
discussion,
CIA I | | | 3 | Factors influencing the magnitude of crystal field splitting, crystal | 2 | 1 | K3(Ap) | Visual concept lecture, | Think-Pair-
Share, | Interactive videos and ppt | Quiz, slip test,
Group | | | | field effect on ionic radii, lattice energies | | | | Structure based learning | Concept
mapping | | discussion,
CIA I | |-----|---------|---|---|---|--------------------|---|---|--|--| | | 4 | Interpretation of magnetic properties, - Jahn – Teller effect. Stability of complexes in aqueous solution | 2 | | K3(Ap) | Model based
teaching,
Demonstration
, Problem
solving | Participatory
learning | Interactive
videos and
ppt | Short test,
Conceptual
questions,
Group
discussion,
CIA I | | | 5 | Stability constants-
factors affecting the
stability of a complex
ion, thermodynamic
and kinetic
stability (elementary
idea). Comparison of
VBT and CFT. | 1 | 1 | K4(An) | Visual concept
lecture,
Demonstration
, Problem
solving | Hands-on model building, Group discussion, Problem based learning | Video lectures, Virtual lab simulations, Interactive ppt | Short test, CIA I | | III | Organom | etallic compounds | | | | | | | | | | 1 | Metal Carbonyls: Mono and polynuclear carbonyls, General methods of preparation | 2 | 1 | K1(R) &
K3 (Ap) | Interactive lecture, Demonstration , Problem solving | Group discussion, Hands-on model building, Peer teaching | Interactive videos and ppt | Formative Quiz, slip test, Conceptual questions, CIA | | | 2 | Properties of carbonyls - structure and bonding in carbonyls of Ni, Fe, Cr, Co, Mn, Ru and Os. | 2 | | K2(U) | Visual concept
lecture,
Structure
based learning | Think-Pair-
Share,
Concept
mapping | Interactive
videos and
ppt | Short test,
Conceptual
questions,
Group
discussion,
CIA I | | | 3 | EAN rule as applied to metal carbonyls. Spectroscopic methods of characterization of metal carbonyls. | 2 | 1 | K3(Ap) | Model based
teaching,
Demonstration
, Problem
solving | Molecular drawing practice, Problem based learning | Interactive
videos and
ppt | Quiz, slip test,
Group
discussion,
CIA I | |----|------------|---|---|---|--------------------|---|---|---|--| | | 4 | Applications of metal carbonyls in industry and as catalyst | 2 | | K3(Ap) | Visual concept
lecture, Rule
based teaching,
Demonstration
, Problem
solving | Hands-on model building, Group discussion, Problem based learning | Video
lectures,
Virtual lab
simulations,
Interactive
ppt | Short test,
Conceptual
questions,
Group
discussion,
CIA I | | | 5 | Ferrocene-Methods of preparation, physical and chemical properties. | 1 | 1 | K4(An) | Interactive
lecture,
Demonstration
, Problem
solving | Group discussion, Hands-on model building, Peer teaching | Interactive
videos and
ppt | Short test, CIA
I | | IV | Metallo er | nzymes | | | | I | 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | | | | | 1 | Isomerase and synthetases, structure of cyanocobalamin (Vitamin B12), nature of Co-C bond; | 2 | 2 | K1(R) &
K3 (Ap) | Conceptual
lecture, Model
based
explanation | Think-Pair-
Share,
Concept
mapping | Video
lectures and
ppt | Formative Quiz, slip test, Conceptual questions, CIA II | | | 2 | Metalloenzymes - functions of carboxy peptidase A, zinc metalloenzyme – mechanism and uses | 2 | | K2(U) | Mechanism
based teaching,
Reaction
mapping,
Concept
mapping | Problem based learning, Think-Pair- Share, Concept mapping | Video
lectures and
ppt | Short test, CIA
II | |---|----------|---|---|---|--------|--|--|----------------------------------|---------------------------------------| | | 3 | Zn-Cu enzyme -
structure and function,
carbonic anhydrase,
Vitamin B-12 as
transferase and
isomerase | 2 | | K3(Ap) | Interactive lecture, Mechanism based explanation | Group
discussion,
Concept
mapping | Interactive
videos and
ppt | Conceptual
questions, CIA
II | | | 4 | Iron-sulphur proteins -
2Fe-2S – rubredoxin,
4Fe-2S – ferridoxin,
Iron sulphur cluster
enzymes. | 2 | 1 | K3(Ap) | Mechanism
based teaching,
Reaction
mapping,
Concept
mapping | Problem based learning, Think-Pair- Share, Concept mapping | Video
lectures and
ppt | Slip test, CIA
II | | | 5 | Invivo and Invitro
nitrogen fixation —
biological functions of
nitrogenase and
molybdo enzymes. | 1 | | K4(An) | Conceptual lecture, Interactive lecture, Structure based explanation | Think-Pair-
Share,
Concept
mapping | | Short test, CIA
II | | V | Inorgani | ic polymers | | | | | | | | | | 1 | General properties – classification of inorganic polymers | 2 | 2 | K1(R) | Interactive lecture, | Think-Pair-
Share, | Video
lectures and
ppt | Formative Quiz, slip test, Conceptual | | | d on element in the
bone (Si, S, B and | | | | Conceptual lecture | Concept
mapping | | questions, CIA
II | |-----------------------|--|---|---|--------|--|---|----------------------------------|---| | propo
(poly
and | aration and erties of silicones vdimethylsiloxane methylhydrosiloxan | 2 | | K2(U) | Mechanism
based teaching | Think-Pair-
Share | Interactive videos and ppt | Quiz, slip test,
Problem
solving,
CIA II | | (poly | hur based polymer
ysulfide and
meric sulphur
de), | 2 | | K3(Ap) | Conceptual lecture, Structure property mapping | Concept
mapping,
Group
discussion | Interactive
videos and
ppt | Short test,
Assignment,
CIA II | | (poly | hur based polymer
ysulfide and
meric sulphur
de), | 2 | 1 | K3(Ap) | Mechanism based teaching, Conceptual lecture, Structure property mapping | Concept
mapping,
Think-Pair-
Share | Interactive
videos and
ppt | Formative
Quiz, slip test,
Conceptual
questions, CIA
II | | (bora indus | on based polymers azine polymers) – strial applications organic polymers | 1 | | K4(An) | Interactive lecture, Conceptual lecture | Think-Pair-
Share,
Concept
mapping | Video
lectures and
ppt | Quiz, Short
test, CIA I | Course Focussing on Employability/ Entrepreneurship/ Skill Development: Employability Activities (Em / En /SD): Group discussion and Problem solving Assignment: Inorganic Polymers(Last date to submit: 01-09-2025) ### Sample questions ### Part A (1 mark) - 1. Co-ordination theory is proposed by ----- (K1-R, CO-1) - a) Werner b) Aristotle c) Lavoisier d) Plato - 2. Jahn Teller effect explains the stability of complexes. State True/False.(K2-U, CO-2) - 3. Iron penta carbonyl is an example of ----- (K1-R, CO-1) - a) mono nuclear carbonyl b) ligand c) polarized waves d) unpolarized waves - 4. Cyanocobalamin is an example for -----(K4-An,CO-4) - 5. Silicones are----- (**K5-E, CO4**) - a) Inorganic polymers b) polymers c) organic compounds d) biopolymers ### Part B (6 marks) - 1. Give the postulates of Werner's coordination theory. (K1-R, CO-1) - 2. Account for Jahn Teller effect. (K2-U, CO-2) - 3. Explain the structure and bonding in Ni(CO)4 (K3-Ap,CO-3) - 4. Write the structure of vitamin B12. (K4-An, CO-4) - 5. Give the preparation and properties of silicones. (K5-E, CO-5) ### Part C (12 marks) - 1. Explain the role of metal chelates in living systems.. (K1-R, CO-1) - 2. Calculate the CFSE in octahedral and tetrahedral complexes. (K3-Ap, CO-3) - 3. Give an account on the preparation and properties of ferrocene.(K2-U, CO-2) - 4. Explain Invivo and Invitro nitrogen fixation(K3-Ap, CO-3) - 5. Outline the industrial applications of inorganic polymers(K4-An, CO-4) Head of the Department: Dr.R. Gladis Latha Course Instructor: Dr.R.Gladis Latha